参考文献/References:
[1]Upadhyay J,Farr O,Perakakis N,et al.Obesity as a disease[J].Medical Clinics,2018,102(1):13-33. [2]Messiah SE,Vidot DC,SomarribaG,et al.Obesity and cardiometabolic disease risk factors among US adolescents with disabilities[J].World Journal of Diabetes,2015,6(1):200-207. [3]Chadid S,Singer MR,Kreger BE,et al.Midlife weight gain is a risk factor for obesity-related cancer[J].British Journal of Cancer,2018,118(12):1665-1671. [4]Bizino MB,Sala ML,de Heer P,et al.MR of multi-organ involvement in the metabolic syndrome[J].Magnetic Resonance Imaging Clinics,2015,23(1):41-58. [5]刘慧,白冰.血管周围脂肪组织与心血管疾病的关系[J].心血管病学进展,2018,39(4):640-643. [6]潘晓航.医学图像分割方法[J].电子技术与软件工程,2018(11):84-85. [7]Graffy PM,Pickhardt PJ.Quantification of hepatic and visceral fat by CT and MR imaging:relevance to the obesity epidemic,metabolic syndrome and NAFLD[J].The British Journal of Radiology,2016,89(1062):20151024. [8]庄俐,张惠莉,张瑞霞.棕色脂肪形成的内分泌及环境影响因素研究[J].医学信息,2019,32(4):36-38. [9]Pham TT,Ivaska KK,Hannukainen JC,et al.Human Bone Marrow Adipose Tissue is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot[J].Journal of Clinical Endocrinology&Metabolism,2020,105(7):1-11. [10]Borga M,West J,Bell JD,et al.Advanced body composition assessment:from body mass index to body composition profiling[J].BMJ Open Access,2018,66(5):887-895. [11]张守华,丁兰洲,常琼,等.能谱CT成像技术指标与脂肪密度模型相关性[J].中华实用诊断与治疗杂志,2017,31(2):153-155. [12]王萍,唐光才,舒健,等.非酒精性脂肪肝肝/脾CT值与血脂的关系研究[J].西南医科大学学报,2018,41(1):67-70. [13]Hu HH,Kan HE.Quantitative proton MR techniques for measuring fat[J].Nmr in Bio-medicine,2013,26(12):1609-1629. [14]Fritz S.Whole-body MRI at high field:technical limits and clinical potential[J].European Radiology,2005,15(5):946-959. [15]骆睿,胡小情,陈潇,等.磁共振多通道射频接收线圈性能评估[J].集成技术,2016,5(3):79-83. [16]祝乐群,李冠武,施丹,等.多回波化学位移编码水/脂MRI评估骨髓脂肪的可行性研究[J].实用放射学杂志,2018,34(2):283-286. [17]Cheng C,Zou C,Liang C,et al.Fat-water separation using a region‐growing algorithm with self‐feeding phasor estimation[J].Magnetic Resonance in Medicine,2017,77(6):2390-2401. [18]曹鸿吉,盛斌,吴雯,等.基于改进K-Means的腹内脂肪自动定量检测算法[J].计算机辅助设计与图形学学报,2017,29(4):575-583. [19]Valentinitsch AC,Karampinos D,Alizai H,et al.Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle[J].Journal of Magnetic Resonance Imaging,2013,37(4):917-927. [20]Wald D,Teucher B,Dinkel J,et al.Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies[J].Journal of Magnetic Resonance Imaging,2012,36(6):1421-1434. [21]Sadananthan SA,Prakash B,Leow KS,et al.Automated segmentation of visceral and subcutaneous(deep and superficial)adipose tissues in normal and overweight men[J].Journal of Magnetic Resonance Imaging,2015,41(4):924-934. [22]陈春林.基于Micro-CT的脂肪测量软件设计开发[D].西安电子科技大学,2014. [23]刘淑霞,王小红,朱春,等.腹部脂肪面积定量 CT 测定及其与肥胖并发症关系的临床研究[J].影像研究与医学应用,2018(1):176-177. [24]晏乘曦,王玲,姚丁华,等.CT定量测量髋部骨折患者髋部肌肉、脂肪面积及CT值的可重复性、可信度分析[J].山东医药,2018,58(16):58-60. [25]Nemoto M,Yeernuer T,Masutani Y,et al.Development of automatic visceral fat volume calculation software for CT volume data[J].Journal of Obesity,2014(2014):495084. [26]Joshi AA,Hu HH,Richard M,et al.Automatic intra-subject registration-based segmentation of abdominal fat from water–fat MRI[J].Journal of Magnetic Resonance Imaging,2013,37(2):423-430. [27]Krishna ST,Kalluri HK.Deep learning and transfer learning approaches for image classification[J].International Journal of Recent Technology and Engineering(IJRTE),2019,7(5S4):427-432. [28]Shen N,Li X,Zheng S,et al.Automated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learning[J].Magnetic Resonance Imaging,2019(64):28-36. [29]Langner T,Hedstrom A,Morwald K,et al.Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI[J].Magnetic Resonance in Medicine,2019,81(4):2736-2745. [30]张嘉祺,赵晓丽,董晓亚,张翔.面向图像语义分割的生成对抗网络模型[J].传感器与微系统,2019,38(8):50-53.
相似文献/References:
[1]向姣姣,李国娟,杨通艳,等.肠道菌群与肥胖发病机制的研究[J].医学信息,2022,35(10):70.[doi:10.3969/j.issn.1006-1959.2022.10.017]
XIANG Jiao-jiao,LI Guo-juan,YANG Tong-yan,et al.Study on Intestinal Flora and Pathogenesis of Obesity[J].Medical Information,2022,35(11):70.[doi:10.3969/j.issn.1006-1959.2022.10.017]
[2]田国胜,于海龙,侯 锐.超声与增强CT对甲状腺髓样癌的诊断效能比较[J].医学信息,2022,35(15):141.[doi:10.3969/j.issn.1006-1959.2022.15.033]
TIAN Guo-sheng,YU Hai-long,HOU Rui.Comparison of Ultrasound and Enhanced CT in Diagnosis of Medullary Thyroid Carcinoma[J].Medical Information,2022,35(11):141.[doi:10.3969/j.issn.1006-1959.2022.15.033]
[3]封 婷,张 皓,王克江.超声与胸部X线摄影在创伤性气胸诊断价值的Meta分析[J].医学信息,2020,33(10):70.[doi:10.3969/j.issn.1006-1959.2020.10.020]
FENG Ting,ZHANG Hao,WANG Ke-jiang.Meta Analysis of the Diagnostic Value of Ultrasound and Chest X-ray Photography in Traumatic Pneumothorax[J].Medical Information,2020,33(11):70.[doi:10.3969/j.issn.1006-1959.2020.10.020]
[4]夏洁芳,徐峰波,李雁冰,等.脂肪组织冻存的方法研究[J].医学信息,2020,33(14):24.[doi:10.3969/j.issn.1006-1959.2020.14.009]
XIA Jie-fang,XU Feng-bo,LI Yan-bing,et al.Study on the Method of Cryopreservation of Adipose Tissue[J].Medical Information,2020,33(11):24.[doi:10.3969/j.issn.1006-1959.2020.14.009]