[1]张 可,陈 静,周 燕.JNK调控阻塞性睡眠呼吸暂停合并高血压模式研究[J].医学信息,2021,34(22):26-30.[doi:10.3969/j.issn.1006-1959.2021.22.007]
 ZHANG Ke,CHEN Jing,ZHOU Yan.Study on the Mode of JNK Regulating Obstructive Sleep Apnea with Hypertension[J].Medical Information,2021,34(22):26-30.[doi:10.3969/j.issn.1006-1959.2021.22.007]
点击复制

JNK调控阻塞性睡眠呼吸暂停合并高血压模式研究()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
34卷
期数:
2021年22期
页码:
26-30
栏目:
论著
出版日期:
2021-11-15

文章信息/Info

Title:
Study on the Mode of JNK Regulating Obstructive Sleep Apnea with Hypertension
文章编号:
1006-1959(2021)22-0026-05
作者:
张 可陈 静周 燕
(1.桂林医学院附属医院呼吸与危重症医学科/呼吸疾病实验室,广西 桂林 541000;2.泰安市中心医院呼吸内科,山东 泰安 271000)
Author(s):
ZHANG KeCHEN JingZHOU Yan
(1.Department of Respiratory and Critical Care Medicine/Laboratory of Respiratory Diseases,Affiliated Hospital of Guilin Medical College,Guilin 541000,Guangxi,China;2.Department of Respiratory Medicine,Taian Central Hospital,Taian 271000,Shandong,China)
关键词:
间歇性低氧JNK信号通路高血压血管重构阻塞性睡眠呼吸暂停
Keywords:
Intermittent hypoxiaJNK signaling pathwayHypertensionVascular remodelingObstructive sleep apnea
分类号:
R766;R544.1
DOI:
10.3969/j.issn.1006-1959.2021.22.007
文献标志码:
A
摘要:
目的 观察JNK信号通路对阻塞性睡眠呼吸暂停(OSA)合并高血压的调控模式。方法 选取生长发育正常大鼠36只,随机分为常氧对照组、常氧干预组、间歇性低氧组、间歇性低氧干预组,每组9只。JNK阻滞剂对两干预组大鼠进行灌胃,后将间歇性低氧组大鼠进放置在低压氧舱内,制作OSA大鼠模型;使用血压计测量各组大鼠12周的平均动脉血压,并在12周末处死大鼠,予大鼠腹主动脉行HE染色查看病理学结果,采用RT-PCR法和Western blot法检测腹主动脉JNK-1的mRNA和蛋白的表达水平。结果 ①与常氧对照组比较,间歇性低氧组大鼠血压升高(P<0.05);与间歇性低氧组比较,间歇性低氧干预组大鼠血压下降(P<0.05);②与间歇性低氧组比较,间歇性低氧干预组中腹主动脉中膜血管平滑肌细胞(VSMCs)数量下降(P<0.05),血管管壁厚度无增加,未见纤维蛋白堆积,无明显内皮细胞表型转化表现,与常氧干预组大鼠比较,间歇性低氧干预组大鼠腹主动脉中膜VSMC层数未增加或减少(P>0.05);③与常氧对照组比较,JNK-1mRNA在间歇性低氧组中表达升高(P<0.05);与间歇性低氧组比较,干预组JNK-1mRNA表达量降低(P<0.05);④与常氧对照组比较,间歇性低氧组JNK-1蛋白表达水平增加(P<0.05);与间歇性低氧组比较,干预组蛋白表达水平降低(P<0.05)。结论 间歇性低氧可引起高血压,并介导大鼠腹主动脉出现血管重构,可能与JNK信号通路的激活有关。
Abstract:
Objective To study the model of JNK pathway on obstructive sleep apnea with hypertension.Methods Thirty-six rats with normal growth and development were randomly divided into normoxia control group, normoxia intervention group, intermittent hypoxia group and intermittent hypoxia intervention group, with 9 rats in each group. JNK inhibitor was administered intragastrically to rats in the two intervention groups, and then rats in the intermittent hypoxia group were placed in the low pressure oxygen chamber to make OSA rat model. The mean arterial blood pressure of rats in each group at 12 weeks was measured by a sphygmomanometer, and the rats were sacrificed at the end of 12 weeks. The abdominal aorta of rats was stained with HE to examine the pathological results. The mRNA and protein expression levels of JNK-1 in the abdominal aorta were detected by RT-PCR and Western blot.Results ①Compared with normoxia control group, the blood pressure of rats in intermittent hypoxia group increased (P<0.05); compared with the intermittent hypoxia group, the blood pressure of rats in the intermittent hypoxia intervention group decreased (P<0.05). ②Compared with the intermittent hypoxia group, the number of vascular smooth muscle cells (VSMCs) in the middle abdominal aorta in the intermittent hypoxia intervention group decreased (P<0.05), there was no increase in vessel wall thickness, no fibrin accumulation, and no obvious phenotypic transformation of endothelial cells; compared with rats in the normoxic intervention group, the number of VSMC layers in the abdominal aorta of rats in the intermittent hypoxia intervention group did not increase or decrease (P>0.05). ③Compared with normoxic control group, the expression of JNK-1mRNA in intermittent hypoxia group increased (P<0.05);compared with the intermittent hypoxia group, the expression of JNK-1mRNA in the intervention group decreased (P<0.05). ④Compared with normoxia group, the expression of JNK-1 protein in intermittent hypoxia group was increased (P<0.05); compared with intermittent hypoxia group, protein expression in intervention group decreased (P<0.05).Conclusion Intermittent hypoxia can cause hypertension and mediate vascular remodeling in rat abdominal aorta, which may be related to the activation of JNK signaling pathway.

参考文献/References:

[1]Wang S,Niu X,Zhang P,et al.Analysis of OSAS incidence and influential factors in middle-aged and elderly patients with hypertension[J].Minerva Med,2019,110(2):115-120.[2]Lu QB,Wang HP,Tang ZH,et al.Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(6 Pt A):2154-2168.[3]Brown IAM,Diederich L,Good ME,et al.Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension[J].Arterioscler Thromb Vasc Biol,2018,38(9):1969-1985.[4]Hu C,Zuo K,Li K,et al.p38/JNK Is Required for the Proliferation and Phenotype Changes of Vascular Smooth Muscle Cells Induced by L3MBTL4 in Essential Hypertension[J].Int J Hypertens,2020(2020):3123968[5]Wu Q,Wu W,Jacevic V,Franca TCC,et al.Selective inhibitors for JNK signalling: a potential targeted therapy in cancer[J].J Enzyme Inhib Med Chem,2020,35(1):574-583.[6]Benjafield AV,Ayas NT,Eastwood PR,et al.Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature‐based analysis[J].Lancet Respir Med,2019(7):687-698.[7]Han B,Chen WZ,Li YC,et al.Sleep and hypertension[J].Sleep Breath,2020,24(1):351-356.[8]Carnethon MR,Johnson DA.Sleep and Resistant Hypertension[J].Curr Hypertens Rep,2019,21(5):34.[9]Brown IAM,Diederich L,Good ME,et al.Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension[J].Arterioscler Thromb Vasc Biol,2018,38(9):1969-1985.[10]Anzai T.Inflammatory Mechanisms of Cardiovascular Remodeling[J].Circ J,2018,82(3):629-635.[11]Geng J,Yang C,Wang B,et al.Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway[J].Biomed Pharmacother,2018(97):941-947.[12]Hammouda MB,Ford AE,Liu Y,et al.The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer[J].Cells,2020,9(4):857.[13]Schellino R,Boido M,Vercelli A.JNK Signaling Pathway Involvement in Spinal Cord Neuron Development and Death[J].Cells,2019,8(12):1576.[14]Kirsch K,Zeke A,Toke O,et al,Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38[J].Nat Commun,2020,11(1):5769.[15]Zhao YN,Wang HY,Li JM,et al.Hippocampal mitogen-activated protein kinase activation is associated with intermittent hypoxia in a rat model of obstructive sleep apnea syndrome[J].Mol Med Rep,2016,13(1):137-145.[16]Halima BH,Sonia G,Sarra K,et al.Apple Cider Vinegar Attenuates Oxidative Stress and Reduces the Risk of Obesity in High-Fat-Fed Male Wistar Rats[J].J Med Food,2018,21(1):70-80.[17]Ikram M,Saeed K,Khan A,et al.Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling[J].Nutrients,2019,11(5):1082.[18]Josefs T,Boon RA.The Long Non-coding Road to Atherosclerosis[J].Curr Atheroscler Rep,2020,22(10):55.[19]Touyz RM,Alves-Lopes R,Rios FJ,et al.Vascular smooth muscle contraction in hypertension[J].Cardiovasc Res,2018,114(4):529-539.[20]Basatemur GL,J?覬rgensen HF,Clarke MCH,et al.Vascular smooth muscle cells in atherosclerosis[J].Nat Rev Cardiol,2019,16(12):727-744.

相似文献/References:

[1]肖丽君,周 燕,汤宇飞.Nrf2-ARE信号通路在间歇性低氧胰腺组织中的作用及银杏叶提取物的干预机理[J].医学信息,2020,33(01):57.[doi:10.3969/j.issn.1006-1959.2020.01.019]
 XIAO Li-jun,ZHOU Yan,TANG Yu-fei.Role of Nrf2-ARE Signaling Pathway in Intermittent Hypoxic Pancreatic Tissue and Intervention Mechanism of Ginkgo Biloba Extract[J].Medical Information,2020,33(22):57.[doi:10.3969/j.issn.1006-1959.2020.01.019]

更新日期/Last Update: 1900-01-01