参考文献/References:
[1]Dillmann WH.Diabetic Cardiomyopathy[J].Circ Res,2019,124(8):1160-1162. [2]Murtaza G,Virk HUH,Khalid M,et al.Diabetic cardiomyopathy - A comprehensive updated review[J].Prog Cardiovasc Dis,2019,62(4):315-326. [3]Maddatu J,Anderson-Baucum E,Evans-Molina C.Smoking and the risk of type 2 diabetes[J].Transl Res,2017,184:101-107. [4]Cai X,Chen Y,Yang W,et al.The association of smoking and risk of diabetic retinopathy in patients with type 1 and type 2 diabetes: a meta-analysis[J].Endocrine,2018,62(2):299-306. [5]Sun L,Wang X,Gu T,et al.Nicotine triggers islet β cell senescence to facilitate the progression of type 2 diabetes[J].Toxicology,2020,441:152502. [6]Keith RJ,Riggs DW,Conklin DJ,et al.Nicotine Metabolism in Adults With Type 2 Diabetes[J].Nicotine Tob Res,2019,21(6):846-849. [7]Ritchie RH,Abel ED.Basic Mechanisms of Diabetic Heart Disease[J].Circ Res,2020,126(11):1501-1525.[8]Kezerle L,Yohanan E,Cohen A,et al.The impact of Heart Team discussion on decision making for coronary revascularization in patients with complex coronary artery disease[J].J Card Surg,2020,35(10):2719-2724.[9]Jall S,De Angelis M,Lundsgaard AM,et al.Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity[J].Diabetologia,2020,63(6):1236-1247. [10]Ganic E,Singh T,Luan C,et al.MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes[J].Cell Rep,2016,14(8):1991-2002. [11]Michaud V,Frappier M,Dumas MC,et al.Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism[J].PLoS One,2010,5(12):e15666. [12]Zhou B,Wang X,Li F,et al.Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes[J].Mol Med Rep,2017,16(1):174-180. [13]Alsaad AMS.Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells[J].Toxicol Mech Methods,2018,28(9):678-684.[14]Widiapradja A,Kasparian AO,McCaffrey SL,et al.Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes[J].Cells,2021,10(10):2659. [15]Ge T,Yu Y,Cui J,et al.The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad[J].Am J Physiol Heart Circ Physiol,2019,317(2):H264-H275.[16]Tian CJ,Zhang JH,Liu J,et al.Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy[J].ESC Heart Fail,2021,8(4):2637-2646. [17]Mishra PK,Ying W,Nandi SS,et al.Diabetic Cardiomyopathy: An Immunometabolic Perspective[J].Front Endocrinol(Lausanne),2017,8:72. [18]Frisancho-Kiss S,Coronado MJ,Frisancho JA,et al.Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis[J].Brain Behav Immun,2009,23(5):649-657. [19]Bajpai A,Tilley DG.The Role of Leukocytes in Diabetic Cardiomyopathy[J].Front Physiol,2018,9:1547.[20]García-Rivas G,Castillo EC,Gonzalez-Gil AM,et al.The role of B cells in heart failure and implications for future immunomodulatory treatment strategies[J].ESC Heart Fail,2020,7(4):1387-1399. [21]Zhang W,Xu W,Feng Y,et al.Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy[J].J Cell Mol Med,2019,23(9):5859-5867.
相似文献/References:
[1]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(23):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[2]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(23):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[3]张 静,李 刚.糖尿病心肌病病理机制研究[J].医学信息,2020,33(02):43.[doi:10.3969/j.issn.1006-1959.2020.02.012]
ZHANG Jing,LI Gang.Research on Pathological Mechanism of Diabetic Cardiomyopathy[J].Journal of Medical Information,2020,33(23):43.[doi:10.3969/j.issn.1006-1959.2020.02.012]
[4]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(23):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[5]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(23):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[6]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(23):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[7]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(23):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
[8]马晓玉,岳欣蕾,韩佳玲,等.蛋白质-适配体相互作用预测的方法[J].医学信息,2020,33(10):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
MA Xiao-yu,YUE Xin-lei,HAN Jia-ling,et al.Method for Predicting Protein-aptamer Interaction[J].Journal of Medical Information,2020,33(23):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
[9]王 淮,杨健康.基于生物信息学分析F13A1基因及蛋白质[J].医学信息,2020,33(11):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]
WANG Huai,YANG Jian-kang.Analysis of F13A1 Gene and Protein Based on Bioinformatics[J].Journal of Medical Information,2020,33(23):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]
[10]王万鹏,张启迪,傅承宏,等.整合转录组学识别食管鳞癌关键基因细胞周期蛋白依赖性激酶抑制因子3[J].医学信息,2021,34(05):68.[doi:10.3969/j.issn.1006-1959.2021.05.020]
WANG Wan-peng,ZHANG Qi-di,FU Cheng-hong,et al.Integrated Transcriptomics to Identify the Key Gene Cyclin-dependent Kinase Inhibitor 3 in Esophageal Squamous Cell Carcinoma[J].Journal of Medical Information,2021,34(23):68.[doi:10.3969/j.issn.1006-1959.2021.05.020]