[1]赵 静,郭 蕊,孟芝君,等.尼古丁影响糖尿病心肌病进展的机制研究[J].医学信息,2022,35(23):32-40,49.[doi:10.3969/j.issn.1006-1959.2022.23.006]
 ZHAO Jing,GUO Rui,MENG Zhi-jun,et al.The Mechanism of Nicotine Influence on Diabetic Cardiomyopathy[J].Journal of Medical Information,2022,35(23):32-40,49.[doi:10.3969/j.issn.1006-1959.2022.23.006]
点击复制

尼古丁影响糖尿病心肌病进展的机制研究()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年23期
页码:
32-40,49
栏目:
论著
出版日期:
2022-12-01

文章信息/Info

Title:
The Mechanism of Nicotine Influence on Diabetic Cardiomyopathy
文章编号:
1006-1959(2022)23-0032-10
作者:
赵 静郭 蕊孟芝君
(1.山西医科大学基础医学院,山西 太原 030001;2.山西医科大学附属人民医院/山西省人民医院检验科,山西 太原 030001;3.山西医科大学第二医院内分泌科,山西 太原 030001)
Author(s):
ZHAO JingGUO RuiMENG Zhi-junet al.
(1.College of Basic Medicine,Shanxi Medical University,Taiyuan 030001,Shanxi,China; 2.Department of Clinical Laboratory,Affiliated People’s Hospital of Shanxi Medical University/Shanxi Provincial People’s Hospital,Taiyuan 030001,Shanxi,China; 3.Department of Endocrinology,the Second Hospital of Shanxi Medical University,Taiyuan 030001,Shanxi,China)
关键词:
生物信息学糖尿病心肌病尼古丁分子机制
Keywords:
BioinformaticsDiabetic cardiomyopathyNicotineMolecular mechanisms
分类号:
R541.4;R363.2
DOI:
10.3969/j.issn.1006-1959.2022.23.006
文献标志码:
A
摘要:
目的 基于生物信息学技术深度挖掘人糖尿病心肌病相关数据库,揭示尼古丁对糖尿病心肌病(DCM)的作用靶点进而阐明其相关机制。方法 通过3大数据库(GEO数据库、Drug bank数据库、STRING数据库)和WGCNA分析对DCM和尼古丁的相关基因进行筛选,揭示尼古丁影响DCM的潜在的hub基因,基于hub基因本体(GO)分析和基因组百科全书(KEGG)分析,通过Cytoscape软件构建影响DCM的hub基因网络以及关键靶点相关通路的交互图,进一步对hub基因和疾病调控基因进行相关性分析,鉴定hub基因与免疫浸润的关系,最后构建hub基因参与的miRNA-mRNA共表达网络,预测hub基因的转录因子,同时ROC曲线探讨靶点与DCM发生发展的关系。结果 共筛选出630个差异基因,共2个hub基因:神经元乙酰胆碱受体β4亚基(Chrnb4)、细胞色素酶P4501A1(Cyp1a1),其主要参与Fe3+反应、维甲酸生物合成过程和影响色氨酸代谢、卵巢类固醇生成;尼古丁通过hub基因加重DCM心肌病进程主要与免疫细胞含量显著相关,此调节过程涉及35个miRNA,2个mRNA,Cyp1a1转录因子;ROC曲线显示Chrnb4 (AUC:0.707)、 Cypla1(AUC:0.769)可作为DCM心肌病的诊断指标。结论 尼古丁可加重DCM心肌病的进程,其与Chrnb4、Cyp1a1相关并通过miRNA-RNA互作调节免疫细胞含量,从而可为治疗吸烟人群中DCM患者心脏的损伤情况提供新的思路。
Abstract:
Objective To explore the related database of human diabetic cardiomyopathy based on bioinformatics technology, reveal the target of nicotine on diabetic cardiomyopathy (DCM) and elucidate its related mechanism.Methods The related genes of DCM and nicotine were screened by three major databases (GEO database, Drug bank database, STRING database) and WGCNA analysis, and the potential hub genes of nicotine affecting DCM were revealed. Based on hub gene ontology (GO) analysis and genome encyclopedia (KEGG) analysis, the interaction diagram of hub gene network and key target related pathways affecting DCM was constructed by Cytoscape software, and the correlation between hub genes and disease regulatory genes was further analyzed to identify the relationship between hub genes and immune infiltration. Finally, a miRNA-mRNA co-expression network involving hub genes was constructed to predict the transcription factors of hub genes, and the ROC curve was used to explore the relationship between the target and the occurrence and development of DCM.Results A total of 630 differential genes were screened out, including two hub genes : neuronal acetylcholine receptor β4 subunit (Chrnb4) and cytochrome P4501A1 (Cyp1a1), which were mainly involved in Fe3+ reaction, retinoic acid biosynthesis, tryptophan metabolism and ovarian steroid production. The process of nicotine aggravating DCM cardiomyopathy through hub gene was mainly related to the content of immune cells, which was involved 35 miRNAs, 2 mRNAs, Cyp1a1 transcription factor; ROC curve showed that Chrnb4 (AUC: 0.707) and Cypla1 (AUC: 0.769) could be used as diagnostic indicators for DCM cardiomyopathy.Conclusion Nicotine can aggravate the process of DCM cardiomyopathy, which is related to Chrnb4 and Cyp1a1 and regulates the content of immune cells through miRNA-RNA interaction, thus providing a new idea for the treatment of cardiac injury in DCM patients in smoking population.

参考文献/References:

[1]Dillmann WH.Diabetic Cardiomyopathy[J].Circ Res,2019,124(8):1160-1162. [2]Murtaza G,Virk HUH,Khalid M,et al.Diabetic cardiomyopathy - A comprehensive updated review[J].Prog Cardiovasc Dis,2019,62(4):315-326. [3]Maddatu J,Anderson-Baucum E,Evans-Molina C.Smoking and the risk of type 2 diabetes[J].Transl Res,2017,184:101-107. [4]Cai X,Chen Y,Yang W,et al.The association of smoking and risk of diabetic retinopathy in patients with type 1 and type 2 diabetes: a meta-analysis[J].Endocrine,2018,62(2):299-306. [5]Sun L,Wang X,Gu T,et al.Nicotine triggers islet β cell senescence to facilitate the progression of type 2 diabetes[J].Toxicology,2020,441:152502. [6]Keith RJ,Riggs DW,Conklin DJ,et al.Nicotine Metabolism in Adults With Type 2 Diabetes[J].Nicotine Tob Res,2019,21(6):846-849. [7]Ritchie RH,Abel ED.Basic Mechanisms of Diabetic Heart Disease[J].Circ Res,2020,126(11):1501-1525.[8]Kezerle L,Yohanan E,Cohen A,et al.The impact of Heart Team discussion on decision making for coronary revascularization in patients with complex coronary artery disease[J].J Card Surg,2020,35(10):2719-2724.[9]Jall S,De Angelis M,Lundsgaard AM,et al.Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity[J].Diabetologia,2020,63(6):1236-1247. [10]Ganic E,Singh T,Luan C,et al.MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes[J].Cell Rep,2016,14(8):1991-2002. [11]Michaud V,Frappier M,Dumas MC,et al.Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism[J].PLoS One,2010,5(12):e15666. [12]Zhou B,Wang X,Li F,et al.Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes[J].Mol Med Rep,2017,16(1):174-180. [13]Alsaad AMS.Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells[J].Toxicol Mech Methods,2018,28(9):678-684.[14]Widiapradja A,Kasparian AO,McCaffrey SL,et al.Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes[J].Cells,2021,10(10):2659. [15]Ge T,Yu Y,Cui J,et al.The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad[J].Am J Physiol Heart Circ Physiol,2019,317(2):H264-H275.[16]Tian CJ,Zhang JH,Liu J,et al.Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy[J].ESC Heart Fail,2021,8(4):2637-2646. [17]Mishra PK,Ying W,Nandi SS,et al.Diabetic Cardiomyopathy: An Immunometabolic Perspective[J].Front Endocrinol(Lausanne),2017,8:72. [18]Frisancho-Kiss S,Coronado MJ,Frisancho JA,et al.Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis[J].Brain Behav Immun,2009,23(5):649-657. [19]Bajpai A,Tilley DG.The Role of Leukocytes in Diabetic Cardiomyopathy[J].Front Physiol,2018,9:1547.[20]García-Rivas G,Castillo EC,Gonzalez-Gil AM,et al.The role of B cells in heart failure and implications for future immunomodulatory treatment strategies[J].ESC Heart Fail,2020,7(4):1387-1399. [21]Zhang W,Xu W,Feng Y,et al.Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy[J].J Cell Mol Med,2019,23(9):5859-5867.

相似文献/References:

[1]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
 YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(23):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[2]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
 HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(23):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[3]张 静,李 刚.糖尿病心肌病病理机制研究[J].医学信息,2020,33(02):43.[doi:10.3969/j.issn.1006-1959.2020.02.012]
 ZHANG Jing,LI Gang.Research on Pathological Mechanism of Diabetic Cardiomyopathy[J].Journal of Medical Information,2020,33(23):43.[doi:10.3969/j.issn.1006-1959.2020.02.012]
[4]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
 WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(23):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[5]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
 LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(23):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[6]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
 HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(23):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[7]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
 HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(23):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
[8]马晓玉,岳欣蕾,韩佳玲,等.蛋白质-适配体相互作用预测的方法[J].医学信息,2020,33(10):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
 MA Xiao-yu,YUE Xin-lei,HAN Jia-ling,et al.Method for Predicting Protein-aptamer Interaction[J].Journal of Medical Information,2020,33(23):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
[9]王 淮,杨健康.基于生物信息学分析F13A1基因及蛋白质[J].医学信息,2020,33(11):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]
 WANG Huai,YANG Jian-kang.Analysis of F13A1 Gene and Protein Based on Bioinformatics[J].Journal of Medical Information,2020,33(23):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]
[10]王万鹏,张启迪,傅承宏,等.整合转录组学识别食管鳞癌关键基因细胞周期蛋白依赖性激酶抑制因子3[J].医学信息,2021,34(05):68.[doi:10.3969/j.issn.1006-1959.2021.05.020]
 WANG Wan-peng,ZHANG Qi-di,FU Cheng-hong,et al.Integrated Transcriptomics to Identify the Key Gene Cyclin-dependent Kinase Inhibitor 3 in Esophageal Squamous Cell Carcinoma[J].Journal of Medical Information,2021,34(23):68.[doi:10.3969/j.issn.1006-1959.2021.05.020]

更新日期/Last Update: 1900-01-01