参考文献/References:
[1]李艳,代永亮,张卫善,等.18F-FDG PET/CT在乳腺癌诊断和分期中的应用价值[J].实用放射学杂志,2019,35(9):1436-1439.[2]居热提·阿扎提,柴黎明,等.18F-脱氧葡萄糖PET/CT代谢参数对食管恶性肿瘤患者放化疗疗效的预测价值[J].医学信息,2020,33(5):80-84.[3]Yoshii T,Miwa K,Yamaguchi M,et al.Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for 18F-NaF bone PET/CT images acquired over shorter durations using a custom-designed phantom[J].EJNMMI Phys,2020,7(1):56.[4]Lindstr?觟m E,Lindsj?觟 L,Sundin A,et al.Evaluation of block-sequential regularized expectation maximization reconstruction of 68Ga-DOTATOC,18F-fluoride, and 11C-acetate whole-body examinations acquired on a digital time-of-flight PET/CT scanner[J].EJNMMI Phys,2020,7(1):40.[5]崔碧霄,卢洁,王曼,等.TOF-PET图像重建技术评价小肿瘤病灶的临床价值[J].医学影像学杂志,2016,26(7):1237-1239.[6]Lindstr?觟m E,Sundin A,Trampal C,et al.Evaluation of Penalized-Likelihood Estimation Reconstruction on a Digital Time-of-Flight PET/CT Scanner for 18F-FDG Whole-Body Examinations[J].J Nucl Med,2018,59(7):1152-1158.[7]Matti A,Lima GM,Pettinato C,et al.How Do the More Recent Reconstruction Algorithms Affect the Interpretation Criteria of PET/CT Images?[J].Nucl Med Mol Imaging,2019,53(3):216-222.[8]Liu Y,Gao MJ,Zhou J,et al.Changes of 18F-FDG-PET/CT quantitative parameters in tumor lesions by the Bayesian penalized-likelihood PET reconstruction algorithm and its influencing factors[J].BMC Med Imaging,2021,21(1):133.[9]王旭,许莎莎,王卓,等.18F-FDG PET/CT贝叶斯正则化似然重建算法对肿瘤定量参数的影响[J].中国医学影像技术,2021,37(11):1720-1724.[10]Teoh EJ,Mcgowan DR,Bradley KM,et al.Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules[J].Eur Radiol,2016,26(2):576-584.[11]Tatsumi M,Soeda F,Kamiya T,et al.Effects of New Bayesian Penalized Likelihood Reconstruction Algorithm on Visualization and Quantification of Upper Abdominal Malignant Tumors in Clinical FDG PET/CT Examinations[J].Front Oncol,2021,11:707023.[12]Parvizi N,Franklin JM,Mcgowan DR,et al.Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases?[J].Eur J Radiol,2015,84(10):1873-1878.[13]Wyrzykowski M,Siminiak N,Kazmierczak M,et al.Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma[J].EJNMMI Res,2020,10(1):99.[14]Yamaguchi S,Wagatsuma K,Miwa K,et al.Bayesian penalized-likelihood reconstruction algorithm suppresses edge artifacts in PET reconstruction based on point-spread-function[J].Phys Med,2018,47:73-79.[15]Chilcott AK,Bradley KM,Mcgowan DR.Effect of a Bayesian Penalized Likelihood PET Reconstruction Compared With Ordered Subset Expectation Maximization on Clinical Image Quality Over a Wide Range of Patient Weights[J].AJR Am J Roentgenol,2018,210(1):153-157.[16]Te riet J,Rijnsdorp S,Roef MJ,et al.Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical?18F-FDG PET/CT[J].EJNMMI Phys,2019,6(1):32.[17]Sah BR,Stolzmann P,Delso G,et al.Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies[J].Nucl Med Commun,2017,38(1):57-66.[18]陈炜,耿建华,卢洪辉,等.正则化最大期望值重建算法中β值对PET图像质量和定量分析的影响[J].中国医学装备,2021,18(11):27-31.[19]Elin T,David M,Helen A,et al.Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG[J].EJNMMI Res,2019,9(1):64[20]Texte E,Gouel P,Thureau S,et al.Impact of the Bayesian penalized likelihood algorithm (Q.Clear?) in comparison with the OSEM reconstruction on low contrast PET hypoxic images[J].EJNMMI Phys,2020,7(1):28.