参考文献/References:
[1]邢文娟,邢长洋,凌树宽,等.长期航天飞行心血管保护:问题与挑战[J].中国科学:生命科学,2022,52(2):190-203.[2]强静,康金兰,刘朝霞.国际空间站人体研究成果分析与启示[J].航天医学与医学工程,2021,34(1):89-94.[3]Marshall-Goebel K,Laurie SS,Alferova IV,et al.Assessment of jugular venous blood flow stasis and thrombosis during spaceflight[J].JAMA Netw Open,2019,2(11):e1915011.[4]Hansen AB,Lawley JS,Rickards CA,et al.Reducing intracranial pressure by reducing central venous pressure: assessment of potential countermeasures to spaceflight-associated neuro-ocular syndrome[J].J Appl Physiol,2021,130(2):283-289. [5]Li HP,Lin YN,Cheng ZH,et al.Intracranial-to-central venous pressure gap predicts the responsiveness of intracranial pressure to PEEP in patients with traumatic brain injury: a prospective cohort study[J].BMC Neurol,2020,20(1):234-241.[6]Klein T,Sanders M,Wollseiffen P,et al.Transient cerebral blood flow responses during microgravity[J].Life Sci Space Res,2020,25:66-71.[7]Stervbo U,Roch T,Kornprobst T,et al.Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood[J].PLoS One,2018,13(11):e0206272. [8]Baevsky RM,Baranov VM,Funtova II,et al.Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station[J].J Appl Physiol,2007,103(1):156-161.[9]Amirova L,Navasiolava N,Rukavishvikov I,et al.Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion[J].Front Physiol,2020,11:395-408. [10]Kermorgant M,Nasr N,Czosnyka M,et al.Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation[J].Front Physiol,2020,11:778-789.[11]Norsk P.Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions[J].Acta Physiol,2020,228(3):e13434. [12]Norsk P,Asmar A,Damgaard M,et al.Fluid shifts, vasodilation and ambulatory blood pressure reduction during long duration spaceflight[J].J Physiol,2015,593(3):573-584.[13]Kumar A,Tahimic CGT,Almeida EAC,et al.Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart[J].Int J Mol Sci,2021,22(16):9088.[14]Hughson RL,Peterson SD,Yee NJ,et al.Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight[J].J Appl Physiol,2017,123(5):1145-1149.[15]Arbeille P,Provost R,Zuj K,et al.Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment)[J].Eur J Appl Physiol,2015,115(10):2099-2106.[16]Burkhart K,Allaire B,Bouxsein ML.Negative Effects of Long-duration Spaceflight on Paraspinal MuscleMorphology[J].Spine,2019,44(12):879-886.[17]Otsuka K,Cornelissen G,Furukawa S,et al.Long-term exposure to space’s microgravity alters the time structure of heart rate variability of astronauts[J].Heliyon,2016,2(12):e00211.[18]Eckberg DL,Diedrich A,Cooke WH,et al.Respiratory modulation of human autonomic function:long-term neuroplasticity in space[J].J Physiol,2016,594(19):5629-5646.[19]Zhang Q,Evans JM,Stenger MB,et al.Autonomic Cardiovascular Responses to Orthostatic Stress After a Short Artificial Gravity Exposure[J].Aerosp Med Hum Perform,2017,88(9):827-833.[20]Fu Q,Shibata S,Hastings JL,et al.Impact of Prolonged Spaceflight on Orthostatic Tolerance During Ambulation and Blood Pressure Profiles in Astronauts[J].Circulation,2019,140(9):729-738.[21]Jordan J,Limper U,Tank J.Cardiovascular autonomic nervous system responses and orthostatic intolerance in astronauts and their relevance in daily medicine[J].Neurol Sci,2022,43(5):3039-3051. [22]Garrett-Bakelman FE,Darshi M,Green SJ,et al.The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight[J].Science,2019,364(144):1-20.[23]Clément GR,Bukley AP,Paloski WH.Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions[J].Front Syst Neurosci,2015,9:92-102.[24]Stahn AC,Werner A,Opatz O,et al.Increased core body temperature in astronauts during long-duration space missions[J].Sci Rep,2017,7(1):160-180.[25]Rosenberg MJ,Coker MA,Taylor JA,et al.Comparison of Dural Venous Sinus Volumes Before and After Flight in Astronauts With and Without Spaceflight-Associated Neuro-Ocular Syndrome[J].JAMA Netw Open,2021,4(10):e2131465..[26]Zwart SR,Gregory JF,Zeisel SH,et al.Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes[J].Faseb J,2016,30(1):141-148.[27]Mcgregor HR,Lee JK,Mulder ER,et al.Ophthalmic changes in a spaceflight analog are associated with brain functional reorganization[J].Hum Brain Mapp,2021,42(13):4281-4297. [28]Marshall-Goebel K,Damani R,Bershad EM.Brain physiological response and adaptation during spaceflight[J].Neurosurgery,2019,85(5):815-821.[29]Koppelmans V,Bloomberg JJ,Mulavara AP,et al.Erratum: Brain structural plasticity with spaceflights[J].NPJ Microgravity,2017,3:30-37. [30]高原,孙静,李小涛,等.电针刺激内关穴对模拟失重大鼠心脑血管氧化应激的影响[J].心脏杂志,2022,34(2):210-214.