[1]周 敏,李小涛,赵 航,等.太空失重对人体心血管的生理影响[J].医学信息,2023,36(04):170-174.[doi:10.3969/j.issn.1006-1959.2023.04.037]
 ZHOU Min,LI Xiao-tao,ZHAO Hang,et al.The Physiological Effects of Weightlessness in Space on human cardiovascular[J].Journal of Medical Information,2023,36(04):170-174.[doi:10.3969/j.issn.1006-1959.2023.04.037]
点击复制

太空失重对人体心血管的生理影响()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年04期
页码:
170-174
栏目:
综述
出版日期:
2023-02-15

文章信息/Info

Title:
The Physiological Effects of Weightlessness in Space on human cardiovascular
文章编号:
1006-1959(2023)04-0170-05
作者:
周 敏李小涛赵 航
(1.西安电子科技大学特殊环境生理与体能训练军民融合创新研究中心,陕西 西安 710126;2.空军军医大学航空航天医学系,陕西 西安 710032;3.中国航天员科研训练中心航天医学国家重点实验室,北京 100094)
Author(s):
ZHOU MinLI Xiao-taoZHAO Hanget al.
(1.Institute of Environmental Physiology and Conditioning,Xidian University,Xi’an 710126,Shaanxi,China;2.Faculty of Aerospace Medicine,Air Force Medical University,Xi’an 710032,Shaanxi,China; 3.State Key Lab of Aerospace Medicine,China Astronaut Researc
关键词:
载人航天失重心血管系统交感神经活性血管阻力血压
Keywords:
Manned spaceflightWeightlessnessCardiovascular systemSympathetic nerve activityVascular resistanceBlood pressure
分类号:
R852.22
DOI:
10.3969/j.issn.1006-1959.2023.04.037
文献标志码:
A
摘要:
长期太空飞行面临的失重环境会导致人体心血管系统产生一系列适应性改变,从而影响航天员的健康,并在重返地球重力环境时危及航天员的安全。太空失重可导致心输出量增加,中心静脉压、心率、血压、血管外周阻力下降,并抑制心血管调节功能,从而对人体心血管的生理健康构成潜在威胁。本文主要对太空失重的心血管效应进行系统综述,以期为后续航天飞行过程中心血管功能的防护研究提供参考和借鉴。
Abstract:
The weightlessness environment faced by long-term space flight will lead to a series of adaptive changes in the human cardiovascular system, which will affect the health of astronauts and endanger the safety of astronauts when returning to the earth’s gravity environment. Weightlessness in space can increase cardiac output, reduce central venous pressure, heart rate, blood pressure and peripheral vascular resistance, and inhibit cardiovascular regulation, thus posing a potential threat to the physiological health of human cardiovascular system. In this paper, the cardiovascular effects of space weightlessness are systematically reviewed in order to provide reference for the protection of cardiovascular function during subsequent space flight.

参考文献/References:

[1]邢文娟,邢长洋,凌树宽,等.长期航天飞行心血管保护:问题与挑战[J].中国科学:生命科学,2022,52(2):190-203.[2]强静,康金兰,刘朝霞.国际空间站人体研究成果分析与启示[J].航天医学与医学工程,2021,34(1):89-94.[3]Marshall-Goebel K,Laurie SS,Alferova IV,et al.Assessment of jugular venous blood flow stasis and thrombosis during spaceflight[J].JAMA Netw Open,2019,2(11):e1915011.[4]Hansen AB,Lawley JS,Rickards CA,et al.Reducing intracranial pressure by reducing central venous pressure: assessment of potential countermeasures to spaceflight-associated neuro-ocular syndrome[J].J Appl Physiol,2021,130(2):283-289. [5]Li HP,Lin YN,Cheng ZH,et al.Intracranial-to-central venous pressure gap predicts the responsiveness of intracranial pressure to PEEP in patients with traumatic brain injury: a prospective cohort study[J].BMC Neurol,2020,20(1):234-241.[6]Klein T,Sanders M,Wollseiffen P,et al.Transient cerebral blood flow responses during microgravity[J].Life Sci Space Res,2020,25:66-71.[7]Stervbo U,Roch T,Kornprobst T,et al.Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood[J].PLoS One,2018,13(11):e0206272. [8]Baevsky RM,Baranov VM,Funtova II,et al.Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station[J].J Appl Physiol,2007,103(1):156-161.[9]Amirova L,Navasiolava N,Rukavishvikov I,et al.Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion[J].Front Physiol,2020,11:395-408. [10]Kermorgant M,Nasr N,Czosnyka M,et al.Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation[J].Front Physiol,2020,11:778-789.[11]Norsk P.Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions[J].Acta Physiol,2020,228(3):e13434. [12]Norsk P,Asmar A,Damgaard M,et al.Fluid shifts, vasodilation and ambulatory blood pressure reduction during long duration spaceflight[J].J Physiol,2015,593(3):573-584.[13]Kumar A,Tahimic CGT,Almeida EAC,et al.Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart[J].Int J Mol Sci,2021,22(16):9088.[14]Hughson RL,Peterson SD,Yee NJ,et al.Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight[J].J Appl Physiol,2017,123(5):1145-1149.[15]Arbeille P,Provost R,Zuj K,et al.Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment)[J].Eur J Appl Physiol,2015,115(10):2099-2106.[16]Burkhart K,Allaire B,Bouxsein ML.Negative Effects of Long-duration Spaceflight on Paraspinal MuscleMorphology[J].Spine,2019,44(12):879-886.[17]Otsuka K,Cornelissen G,Furukawa S,et al.Long-term exposure to space’s microgravity alters the time structure of heart rate variability of astronauts[J].Heliyon,2016,2(12):e00211.[18]Eckberg DL,Diedrich A,Cooke WH,et al.Respiratory modulation of human autonomic function:long-term neuroplasticity in space[J].J Physiol,2016,594(19):5629-5646.[19]Zhang Q,Evans JM,Stenger MB,et al.Autonomic Cardiovascular Responses to Orthostatic Stress After a Short Artificial Gravity Exposure[J].Aerosp Med Hum Perform,2017,88(9):827-833.[20]Fu Q,Shibata S,Hastings JL,et al.Impact of Prolonged Spaceflight on Orthostatic Tolerance During Ambulation and Blood Pressure Profiles in Astronauts[J].Circulation,2019,140(9):729-738.[21]Jordan J,Limper U,Tank J.Cardiovascular autonomic nervous system responses and orthostatic intolerance in astronauts and their relevance in daily medicine[J].Neurol Sci,2022,43(5):3039-3051. [22]Garrett-Bakelman FE,Darshi M,Green SJ,et al.The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight[J].Science,2019,364(144):1-20.[23]Clément GR,Bukley AP,Paloski WH.Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions[J].Front Syst Neurosci,2015,9:92-102.[24]Stahn AC,Werner A,Opatz O,et al.Increased core body temperature in astronauts during long-duration space missions[J].Sci Rep,2017,7(1):160-180.[25]Rosenberg MJ,Coker MA,Taylor JA,et al.Comparison of Dural Venous Sinus Volumes Before and After Flight in Astronauts With and Without Spaceflight-Associated Neuro-Ocular Syndrome[J].JAMA Netw Open,2021,4(10):e2131465..[26]Zwart SR,Gregory JF,Zeisel SH,et al.Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes[J].Faseb J,2016,30(1):141-148.[27]Mcgregor HR,Lee JK,Mulder ER,et al.Ophthalmic changes in a spaceflight analog are associated with brain functional reorganization[J].Hum Brain Mapp,2021,42(13):4281-4297. [28]Marshall-Goebel K,Damani R,Bershad EM.Brain physiological response and adaptation during spaceflight[J].Neurosurgery,2019,85(5):815-821.[29]Koppelmans V,Bloomberg JJ,Mulavara AP,et al.Erratum: Brain structural plasticity with spaceflights[J].NPJ Microgravity,2017,3:30-37. [30]高原,孙静,李小涛,等.电针刺激内关穴对模拟失重大鼠心脑血管氧化应激的影响[J].心脏杂志,2022,34(2):210-214.

更新日期/Last Update: 1900-01-01