参考文献/References:
[1]Knopman DS,Amieva H,Petersen RC,et al.Alzheimer disease[J].Nat Rev Dis Primers,2021,7(1):33.[2]Jia L,Du Y,Chu L,et al.Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J].Lancet Public Health,2020,5(12):e661-e671.[3]王英全,梁景宏,贾瑞霞,等.2020-2050年中国阿尔茨海默病患病情况预测研究[J].阿尔茨海默病及相关病,2019,2(1):289-298.[4]Self WK,Holtzman DM.Emerging diagnostics and therapeutics for Alzheimer disease[J].Nat Med,2023,29(9):2187-2199.[5]Sbai O,Bazzani V,Tapaswi S,et al.Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer’s disease?[J].Front Mol Neurosci,2023,16:1166879.[6]Zhang H,Wei W,Zhao M,et al.Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease[J].Int J Biol Sci,2021,17(9):2181-2192.[7]Busche MA,Hyman BT.Synergy between amyloid-β and tau in Alzheimer’s disease[J].Nat Neurosci,2020,23(10):1183-1193.[8]Fan L,Mao C,Hu X,et al.New Insights Into the Pathogenesisof Alzheimer’s Disease[J].Front Neurol,2020,10:1312.[9]Ashleigh T,Swerdlow RH,Beal MF.The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis[J].Alzheimers Dement,2023,19(1):333-342.[10]Hu H,Guo L,Overholser J,et al.Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities[J].Cells,2022,11(19):3174.[11]Xian H,Watari K,Sanchez-Lopez E,et al.Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J].Immunity,2022,55(8):1370-1385.e8.[12]Chu Y,Goldman JG,Kelly L,et al.Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease[J].Neurobiol Dis,2014,69:1-14.[13]Smilansky A,Dangoor L,Nakdimon I,et al.The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy[J].J Biol Chem,2015,290(52):30670-30683.[14]Yin L,Ye Y,Zou L,et al.AR antagonists develop drug resistance through TOMM20 autophagic degradation-promoted transformation to neuroendocrine prostate cancer[J].J Exp Clin Cancer Res,2023,42(1):204.[15]Park SH,Lee AR,Choi K,et al.TOMM20 as a potential therapeutic target of colorectal cancer[J].BMB Rep,2019,52(12):712-717.[16]Teixeira FR,Randle SJ,Patel SP,et al.Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease[J].Biochem J,2016,473(20):3563-3580.[17]Xiong X,Li S,Han TL,et al.Study of mitophagy and ATP-related metabolomics based on β-amyloid levels in Alzheimer’s disease[J].Exp Cell Res,2020,396(1):112266.[18]Geldenhuys WJ,Leeper TC,Carroll RT.mitoNEET as a novel drug target for mitochondrial dysfunction[J].Drug Discov Today,2014,19(10):1601-1606.[19]Yuan H,Li X,Zhang X,et al.CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J].Biochem Biophys Res Commun,2016,478(2):838-844.[20]Martinez A,Sanchez-Martinez A,Pickering JT,et al.Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models[J].Mol Neurodegener,2024,19(1):12.[21]Nyenhuis SB,Wu X,Strub MP,et al.OPA1 helical structures give perspective to mitochondrial dysfunction[J].Nature,2023,620(7976):1109-1116.[22]Del Dotto V,Fogazza M,Carelli V,et al.Eight human OPA1 isoforms, long and short: What are they for?[J].Biochim Biophys Acta Bioenerg,2018,1859(4):263-269.[23]von der Malsburg A,Sapp GM,Zuccaro KE,et al.Structural mechanism of mitochondrial membrane remodelling by human OPA1[J].Nature,2023,620(7976):1101-1108.[24]Gao J,Wang L,Liu J,et al.Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases[J].Antioxidants (Basel),2017,6(2):25.[25]Zhang R,Hou T,Cheng H,et al.NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism[J].FASEB J,2019,33(12):13310-13322.[26]Hou T,Zhang R,Jian C,et al.NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly[J].Cell Res,2019,29(9):754-766.[27]Otowa T,Maher BS,Aggen SH,et al.Genome-wide and gene-based association studies of anxiety disorders in European and African American samples[J].PLoS One,2014,9(11):e112559.[28]Liang D,Ning M,Xie H,et al.Radiotherapy Side Effects: Comprehensive Proteomic Study Unraveled Neural Stem Cell Degenerative Differentiation upon Ionizing Radiation[J].Biomolecules,2022,12(12):1759.[29]Cheung G,Lin YC,Papadopoulos V.Translocator protein in the rise and fall of central nervous system neurons[J].Front Cell Neurosci,2023,17:1210205.[30]Fairley LH,Lai KO,Wong JH,et al.Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease[J].Proc Natl Acad Sci U S A,2023,120(8):e2209177120.[31]Tournier BB,Tsartsalis S,Rigaud D,et al.TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease[J].Neurobiol Dis,2019,121:95-105.
相似文献/References:
[1]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(09):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[2]桑星晨.黄芩的化学成分及治疗阿尔兹海默病的研究进展[J].医学信息,2019,32(13):52.[doi:10.3969/j.issn.1006-1959.2019.13.016]
SANG Xing-chen.Advances in Research on Chemical Constituents of Astragalus and Treatment of Alzheimer's Disease[J].Journal of Medical Information,2019,32(09):52.[doi:10.3969/j.issn.1006-1959.2019.13.016]
[3]黄梦倩,张瑞恒,刘楚浩,等.影像组学在神经系统疾病中的应用研究[J].医学信息,2019,32(16):47.[doi:10.3969/j.issn.1006-1959.2019.16.015]
HUANG Meng-qian,ZHANG Rui-heng,LIU Chu-hao,et al.Application of Radiomics in Nervous System Diseases[J].Journal of Medical Information,2019,32(09):47.[doi:10.3969/j.issn.1006-1959.2019.16.015]
[4]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(09):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[5]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(09):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[6]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(09):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[7]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(09):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[8]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(09):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
[9]马晓玉,岳欣蕾,韩佳玲,等.蛋白质-适配体相互作用预测的方法[J].医学信息,2020,33(10):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
MA Xiao-yu,YUE Xin-lei,HAN Jia-ling,et al.Method for Predicting Protein-aptamer Interaction[J].Journal of Medical Information,2020,33(09):27.[doi:10.3969/j.issn.1006-1959.2020.10.008]
[10]王 淮,杨健康.基于生物信息学分析F13A1基因及蛋白质[J].医学信息,2020,33(11):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]
WANG Huai,YANG Jian-kang.Analysis of F13A1 Gene and Protein Based on Bioinformatics[J].Journal of Medical Information,2020,33(09):52.[doi:10.3969/j.issn.1006-1959.2020.11.017]