[1]聂 斌,李雪玲,陈 樱.从混合组织中推测细胞比例及基因表达的在线应用构建[J].医学信息,2025,38(10):56-61.[doi:10.3969/j.issn.1006-1959.2025.10.009]
 NIE Bin,LI Xueling,CHEN Ying.Construction of an Online Tool for Inferring Cellular Proportions and Gene Expression from Heterogeneous Tissues[J].Journal of Medical Information,2025,38(10):56-61.[doi:10.3969/j.issn.1006-1959.2025.10.009]
点击复制

从混合组织中推测细胞比例及基因表达的在线应用构建()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
38卷
期数:
2025年10期
页码:
56-61
栏目:
卫生管理信息学
出版日期:
2025-05-15

文章信息/Info

Title:
Construction of an Online Tool for Inferring Cellular Proportions and Gene Expression from Heterogeneous Tissues
文章编号:
1006-1959(2025)10-0056-06
作者:
聂 斌1 2 李雪玲2陈 樱3
1.安徽建筑大学电子与信息工程学院,安徽 合肥 230000;2.中国科学院合肥物质科学研究院健康与医学技术研究所,安徽 合肥 230000;3.安徽医科大学第一附属医院外科,安徽 合肥 230000
Author(s):
NIE Bin12 LI Xueling2 CHEN Ying3
1.School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230000, Anhui, China;2.Institute of Health and Medical Technology, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230000, Anhui, China;3.Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, China
关键词:
R-shiny细胞类型反卷积新辅助放疗基因表达
Keywords:
R-shiny Cell type deconvolution Neoadjuvant radiotherapy Gene expression
分类号:
R197
DOI:
10.3969/j.issn.1006-1959.2025.10.009
文献标志码:
B
摘要:
从bulk转录组学和DNA甲基化等数据中推断单个细胞类型比例及基因表达的方法,称为细胞类型反卷积方法。细胞类型反卷积方法在细胞异质性和肿瘤免疫微环境研究中发挥了重要的作用,然而各类方法在不同数据上的表现并不稳定。为了克服单个反卷积方法结果的偏倚和功能限制,本文基于R-shiny框架构建了一个从混合组织中推测细胞比例及基因表达研究的在线应用(www.deconvolution.cn),用于转录组数据和DNA甲基化数据的细胞比例分析、基因表达、富集分析及单细胞数据处理等功能。将工具应用在GSE119409直肠癌数据上,得到了新辅助放疗应答与细胞比例和细胞水平基因表达的关系。本应用提供了一个细胞类型反卷积研究的统一交互平台,对研究癌症预后和治疗应答机制都具有重要的意义。
Abstract:
Methods for inferring the proportion of individual cell types and gene expression from bulk transcriptomic data or DNA methylation are collectively referred to as cell type deconvolution methods. Cell type deconvolution has played an important role in the study of cell heterogeneity and tumor immune microenvironment, but the performance of various methods on different data is not stable. In order to overcome the results bias and functional limitations of a single deconvolution method, an online application for prediction of cell proportion and gene expression from heterogeneous tissues based on the R-shiny framework is constructed (www.deconvolution.cn), for transcriptome data and DNA methylation data cell proportion analysis, gene expression, enrichment analysis and single cell data processing functions. The tool was applied to GSE119409 rectal cancer data, and the relationship between neoadjuvant radiotherapy response and cell proportion and cellular level gene expression was obtained. This application provides a unified interactive platform for the study of cell type deconvolution, which is of great significance for the study of cancer prognosis and therapeutic response mechanism.

参考文献/References:

[1]Sharma A,Merritt E,Hu X,et al.Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors[J].Cell Rep,2019,29(8):2164-2174.[2]Hendry S,Salgado R,Gevaert T,et al.Assessing tumor infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group[J].Adv Anat Pathol,2017,24(6):311-335.[3]Shen-Orr SS,Tibshirani R,Khatri P,et al.Cell type-specific gene expression differences in complex tissues[J].Nature Methods,2010,7(4):287-289.[4]L?覿hnemann D,K?觟ster J,Szczurek E,et al.Eleven grand challenges in single-cell data science[J].Genome Biol,2020,21(1):31.[5]Li B,Li T,Liu JS,et al.Computational deconvolution of tumor-infiltrating immune components with bulk tumor gene expression data[J].Methods Mol Biol,2020,2120:249-262.[6]Wang X,Park J,Susztak K,et al.Bulk Tissue Cell Type Deconvolution with Multi-Subject Single-Cell Expression Reference[J].Nature Communications,2019,10(1):380.[7]Newman AM,Liu CL,Green MR,et al.Robust enumeration of cell subsets from tissue expression profiles[J].Nat Methods,2015,12(5):453-457.[8]Finotello F,Mayer C,Plattner C,et al.Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data[J].Genome Med,2019,11(1):34.[9]Dong M,Thennavan A,Urrutia E,et al.SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references[J].Briefings in Bioinformatics,2020,22(1):416-427.[10]Baron M,Veres A,Wolock SL,et al.A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-Cell Population Structure[J].Cell Systems,2016,3(4):346-360.e4. [11]Becht E,Giraldo NA,Lacroix L,et al.Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[J].Genome Biol,2016,17(1):218.[12]Aran D,Hu Z,Butte AJ.xCell: digitally portraying the tissue cellular heterogeneity landscape[J].Genome Biol,2017,18(1):220.[13]Kang K,Huang C,Li Y,et al.CDSeqR: Fast Complete Deconvolution for Gene Expression Data from Bulk Tissues[J].BMC Bioinformatics,2021,22(1):262.[14]Chu T,Wang Z,Pe’er D,et al.Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology[J].Nat Cancer,2022,3(4):505-517.[15]Menden K,Marouf M,Oller S,et al.Deep Learningbased Cell Composition Analysis from Tissue Expression Profiles[J].Science Advances,2020,6(30):eaba2619.[16]Chen Y,Wang Y,Chen Y,et al.Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis[J].Nat Commun,2022,13(1):6735.[17]Avila Cobos F,Alquicira-Hernandez J,Powell JE,et al.Benchmarking of cell type deconvolution pipelines for transcriptomics data[J].Nat Commun,2020,11(1):5650. [18]He D,Chen M,Wang W,et al.Deconvolution of tumor composition using partially available DNA methylation data[J].BMC Bioinformatics,2022,23(1):355.[19]Arneson D,Yang X,Wang K.MethylResolver—a method for deconvoluting bulk DNA methylation profiles into known and unknown cell contents[J].Commun Biol,2020,3(1):422.[20]Chakravarthy A,Furness A,Joshi K,et al.Pan-cancer deconvolution of tumour composition using DNA methylation[J].Nat Commun,2018,9(1):3220.[21]Aran D,Looney AP,Liu L,et al.Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J].Nat Immunol,2019,20(2):163-172.[22]Tu JJ,Li HS,Yan H,et al.EnDecon: cell type deconvolution of spatially resolved transcriptomics data viaensemblelearning[J].Bioinformatics,2023,39(1):btac825.[23]胡晓雯,薛铭琰,张枫,等.基于R shiny的法定传染病可视化分析系统的设计和初步应用[J].南京医科大学学报(自然科学版),2021,41(3):444-449,459.

更新日期/Last Update: 1900-01-01