参考文献/References:
[1]Sharma A,Merritt E,Hu X,et al.Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors[J].Cell Rep,2019,29(8):2164-2174.[2]Hendry S,Salgado R,Gevaert T,et al.Assessing tumor infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group[J].Adv Anat Pathol,2017,24(6):311-335.[3]Shen-Orr SS,Tibshirani R,Khatri P,et al.Cell type-specific gene expression differences in complex tissues[J].Nature Methods,2010,7(4):287-289.[4]L?覿hnemann D,K?觟ster J,Szczurek E,et al.Eleven grand challenges in single-cell data science[J].Genome Biol,2020,21(1):31.[5]Li B,Li T,Liu JS,et al.Computational deconvolution of tumor-infiltrating immune components with bulk tumor gene expression data[J].Methods Mol Biol,2020,2120:249-262.[6]Wang X,Park J,Susztak K,et al.Bulk Tissue Cell Type Deconvolution with Multi-Subject Single-Cell Expression Reference[J].Nature Communications,2019,10(1):380.[7]Newman AM,Liu CL,Green MR,et al.Robust enumeration of cell subsets from tissue expression profiles[J].Nat Methods,2015,12(5):453-457.[8]Finotello F,Mayer C,Plattner C,et al.Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data[J].Genome Med,2019,11(1):34.[9]Dong M,Thennavan A,Urrutia E,et al.SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references[J].Briefings in Bioinformatics,2020,22(1):416-427.[10]Baron M,Veres A,Wolock SL,et al.A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-Cell Population Structure[J].Cell Systems,2016,3(4):346-360.e4. [11]Becht E,Giraldo NA,Lacroix L,et al.Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[J].Genome Biol,2016,17(1):218.[12]Aran D,Hu Z,Butte AJ.xCell: digitally portraying the tissue cellular heterogeneity landscape[J].Genome Biol,2017,18(1):220.[13]Kang K,Huang C,Li Y,et al.CDSeqR: Fast Complete Deconvolution for Gene Expression Data from Bulk Tissues[J].BMC Bioinformatics,2021,22(1):262.[14]Chu T,Wang Z,Pe’er D,et al.Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology[J].Nat Cancer,2022,3(4):505-517.[15]Menden K,Marouf M,Oller S,et al.Deep Learningbased Cell Composition Analysis from Tissue Expression Profiles[J].Science Advances,2020,6(30):eaba2619.[16]Chen Y,Wang Y,Chen Y,et al.Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis[J].Nat Commun,2022,13(1):6735.[17]Avila Cobos F,Alquicira-Hernandez J,Powell JE,et al.Benchmarking of cell type deconvolution pipelines for transcriptomics data[J].Nat Commun,2020,11(1):5650. [18]He D,Chen M,Wang W,et al.Deconvolution of tumor composition using partially available DNA methylation data[J].BMC Bioinformatics,2022,23(1):355.[19]Arneson D,Yang X,Wang K.MethylResolver—a method for deconvoluting bulk DNA methylation profiles into known and unknown cell contents[J].Commun Biol,2020,3(1):422.[20]Chakravarthy A,Furness A,Joshi K,et al.Pan-cancer deconvolution of tumour composition using DNA methylation[J].Nat Commun,2018,9(1):3220.[21]Aran D,Looney AP,Liu L,et al.Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J].Nat Immunol,2019,20(2):163-172.[22]Tu JJ,Li HS,Yan H,et al.EnDecon: cell type deconvolution of spatially resolved transcriptomics data viaensemblelearning[J].Bioinformatics,2023,39(1):btac825.[23]胡晓雯,薛铭琰,张枫,等.基于R shiny的法定传染病可视化分析系统的设计和初步应用[J].南京医科大学学报(自然科学版),2021,41(3):444-449,459.