[1]胡晨波,彭俊木,钟伟洋,等.生长因子纳米载药系统促进组织修复的研究[J].医学信息,2021,34(06):50-56.[doi:10.3969/j.issn.1006-1959.2021.06.014]
 HU Chen-bo,PENG Jun-mu,ZHONG Wei-yang,et al.Research on Growth Factor Nano Drug Delivery System Promoting Tissue Repair[J].Medical Information,2021,34(06):50-56.[doi:10.3969/j.issn.1006-1959.2021.06.014]
点击复制

生长因子纳米载药系统促进组织修复的研究()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
34卷
期数:
2021年06期
页码:
50-56
栏目:
综述
出版日期:
2021-03-15

文章信息/Info

Title:
Research on Growth Factor Nano Drug Delivery System Promoting Tissue Repair
文章编号:
1006-1959(2021)06-0050-07
作者:
胡晨波彭俊木钟伟洋
(重庆医科大学附属第一医院骨科,重庆 400016)
Author(s):
HU Chen-boPENG Jun-muZHONG Wei-yanget al.
(Department of Orthopedics,the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China)
关键词:
生长因子载药系统纳米微粒骨再生组织修复
Keywords:
Growth factorDrug delivery systemNanoparticleBone regenerationTissue repair
分类号:
R943
DOI:
10.3969/j.issn.1006-1959.2021.06.014
文献标志码:
A
摘要:
生长因子在组织修复、创面愈合等方面发挥作用,但由于其在体内的不稳定性和毒性作用限制了临床应用范围,而新型的载药系统为生长因子类药物的控释提供了可能。目前常见用于载药系统的材料有脂质体、固体脂质纳米粒、纳米结构脂质体、多聚物、蛋白质和介孔二氧化硅等,而基于不同材料的载药系统具有不同的特性。本文就纳米载药系统的概述及优越性、常见纳米载药材料的分类、生长因子纳米载药系统的应用及其不足及改进策略作一综述,以期为生长因子类药物纳米载药系统的应用提供参考。
Abstract:
Growth factors play a role in tissue repair, wound healing, etc., but their instability and toxicity in the body limit the scope of clinical application, and new drug delivery systems provide the possibility for the controlled release of growth factor drugs.At present, the materials commonly used in drug delivery systems include liposomes, solid lipid nanoparticles, nanostructured liposomes, polymers, proteins, and mesoporous silica, etc. However, drug delivery systems based on different materials have different characteristic.This article reviews the overview and advantages of nano drug delivery systems, the classification of common nano drug delivery materials, the application of growth factor nano drug delivery systems and their shortcomings and improvement strategies, with a view to the application of growth factor drug nano drug delivery systems for reference.

参考文献/References:

[1]Vo TN,Kasper FK,Mikos AG.Strategies for controlled delivery of growth factors and cells for bone regeneration[J].Advanced Drug Delivery Reviews,2012,64(12):1292-1309. [2]Martino MM,Briquez PS,Güc E,et al.Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing[J].Science,2014,343(6173):885-888. [3]Dinh T,Braunagel S,Rosenblum BI.Growth Factors in Wound Healing:The Present and the Future[J].Clinics in Podiatric Medicine and Surgery,2015,32(1):109-119. [4]徐委,程黎明.神经营养因子修复脊髓损伤的研究与应用[J].中国组织工程研究,2013(2):369-374. [5]Tannoury CA,An HS.Complications with the use of bone morphogenetic protein 2(BMP-2)in spine surgery[J].Spine Journal Official Journal of the North American Spine Society,2014,14(3):552-559. [6]Deutsch H.High-dose bone morphogenetic protein-induced ectopic abdomen bone growth[J].The Spine Journal:Official Journal of the North American Spine Society,2009,10(2):e1-e4. [7]Shields LBE,Raque GH,Glassman SD,et al.Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion[J].Spine,2006,31(5):542-547. [8]孙世光,王建民,余明莲.重组人表皮生长因子不同制剂稳定性考察[J].解放军药学学报,2009(6):489-491 [9]边素艳,刘宏斌,刘宏伟,等.生长因子刺激的间充质干细胞释放具有很强促血管新生功能的外泌体[J].中国实验血液学杂志,2018,26(5):294-298. [10]Wang Z,Wang Z,Lu WW,et al.Novel biomaterial strategies for controlled growth factor delivery for biomedical applications[J].Npg Asia Materials,2017,9(10):e435. [11]杜学忠.刺激响应介孔氧化硅纳米载药系统的可控组装及控制释放性能[J].科学通报,2017(6):519-531. [12]周丽.生物模板合成多功能纳米材料及其于药物运载体系中的应用[D].中国科学院大学,2014. [13]Piergiorgio G,Vijay N,Ritesh P,et al.Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration[J].International Journal of Molecular Sciences,2015,16(9):20492-20510. [14]何勤,刘亚圆.肿瘤靶向纳米载药系统的设计与构建[J].药学进展,2016,40(4):261-269. [15]Zhang Y,Deng X,Jiang D,et al.Long-term results of anterior cervical corpectomy and fusion with nano-hydroxyapatite/polyamide 66 strut for cervical spondylotic myelopathy[J].Scientific Reports,2016(6):26751. [16]Allen TM,Cullis PR.Liposomal drug delivery systems: from concept to clinical applications[J].Adv Drug Deliv Rev,2013,65(1):36-48. [17]Ferreira CL,Abreu FA,Silva GA,et al.TGF-b1 and BMP-4 carried by liposomes enhance the healing[J].Arch Oral Biol,2013,58(6):646-656. [18]Jeon S,Hwang H,Oh D,et al.Enhanced percutaneous delivery of recombinant human epidermal growth factor employing nano-liposome system[J].J Microencapsul,2012,29(3):234-241. [19]Abuchowski A,McCoy JR,Palczuk NC,et al.Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase[J].J Biol Chem,1977,10;252(11):3582-3586. [20]James ND,Coker RJ,Tomlinson D,et al.Liposomal doxorubicin(Doxil):an effective new treatment for Kaposi’s sarcoma in AIDS[J].Clin Oncol(R Coll Radiol),1994,6(5):294-296. [21]安学勤.刺激响应脂质体及其在控制释药中的应用[J].中国科学:化学,2015,45(4):340-349. [22]Kneidl B,Peller M,Winter G,et al.Thermosensitive liposomal drug delivery systems:state of the art review[J].Int J Nanomedicine,2014(9):4387-4398. [23]Moghassemi S,Hadjizadeh A,Hakamivala A,et al.Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization[J].AAPS Pharm Sci Tech,2017,18(1):34-41. [24]Blasi P,Giovagnoli S,Schoubben A,et al.Solid lipid nanoparticles for targeted brain drug delivery[J].Adv Drug Deliv Rev,2007,59(6):454-477. [25]Muchow M,Maincent P,Muller RH.Lipid nanoparticles with a solid matrix(sln,nlc,ldc)for oral drug delivery[J].Drug Dev Ind Pharm,2008,34(12):1394-1405. [26]Yuan H,Huang LF,Du YZ,et al.Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system[J].Colloids Surf B Biointerfaces,2008,61(2):132-137. [27]Padhye SG,Nagarsenker MS.Simvastatin solid lipid nanoparticles for oral delivery:Formulation development and in vivo evaluation[J].Indian J Pharm Sci,2013,75(5):591-598. [28]Mu H,Holm R,Mullertz A.Lipid-based formulations for oral administration of poorly water-soluble drugs[J].Int J Pharm,2013,453(1):215-224. [29]Silva AC,Kumar A,Wild W,et al.Long-term stability,biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles[J].Int J Pharm,2012,436(1-2):798-805. [30]Rostami E,Kashanian S,Azandaryani AH,et al.Drug targeting using solid lipid nanoparticles[J].Chem Phys Lipids,2014(181):56-61. [31]Kuo YC,Rajesh R.Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation[J].Mater Sci Eng C Mater Biol Appl,2017(77):680-689. [32]Shangguan M,Lu Y,Qi J,et al.Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin[J].J Biomater Appl,2014,28(6):887-896. [33]Naseri N,Valizadeh H,Zakeri-Milani P.Solid Lipid Nanoparticles and Nanostructured Lipid Carriers:Structure,Preparation and Application[J].Adv Pharm Bull,2015,5(3):305-313. [34]Chereddy KK,Lopes A,Koussoroplis S,et al.Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds[J].Nanomedicine,2015,11(8):1975-1984. [35]Aoki S,Fujii M,Fujie T,et al.The efficacy of basic fibroblast growth factor-loaded poly(lactic-co-glycolic acid)nanosheet for mouse wound healing[J].Wound Repair Regen,2017,25(6):1008-1016. [36]黄勇.壳聚糖及其胍基化衍生物的合成、表征及抗菌性能研究[D].华中科技大学,2014. [37]Poth N,Seiffart V,Gross G,et al.Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2[J].Biomolecules,2015,5(1):3-19. [38]Raftery R,O’Brien FJ,Cryan SA.Chitosan for gene delivery and orthopedic tissue engineering applications[J].Molecules,2013,18(5):5611-5647. [39]Lu H,Lv L,Dai Y,et al.Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-β1 induce DNA controlled release,transfected chondrocytes,and promoted cell proliferation[J].PLoS One,2013,8(7):e69950. [40]Sun H,Xu F,Guo D,et al.In vitro evaluation of the effects of various additives and polymers on nerve growth factor microsphere[J].Drug Dev Ind Pharm,2014,40(4):452-457. [41]Zhang S,Doschak MR,Uludag H.Pharmacokinetics and bone formation by BMP-2 entrapped in polyethylenimine-coated albumin nanoparticles[J].Biomaterials,2009,30(28):5143-5155. [42]Zhang S,Kucharski C,Doschak MR,et al.Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery[J].Biotechnology Progress,2010,24(4):945-956. [43]Li L,Zhou G,Wang Y,et al.Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect[J].Biomaterials,2015(37):218-229. [44]Kresge CT,Leonowicz M E,Roth WJ,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(6397):710-712. [45]杨涵,陈星濛,高俊潇,等.上转换介孔二氧化硅多功能肝癌诊疗纳米复合体系的构建[J].生物医学工程研究,2019,38(1):6-11. [46]Yamashita K,Yoshioka Y,Higashisaka K,et al.Silica and titanium dioxide nanoparticles cause pregnancy complications in mice[J].Nature Nanotechnology,2011,6(5):321. [47]Fu C,Liu T,Li L,et al.The absorption,distribution,excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes[J].Biomaterials,2013,34(10):2565-2575. [48]Tietze R,Zaloga J,Unterweger H,et al.Magnetic nanoparticle-based drug delivery for cancer therapy[J].Biochem Biophys Res Commun,2015,468(3):463-470. [49]Qiao R,Yang C,Gao M.Superparamagnetic iron oxide nanoparticles:From preparations to in vivo MRI applications[J].Journal of Materials Chemistry,2009,19(35):6274-6293. [50]Laurent S,Forge D,Port M,et al.Magnetic iron oxide nanoparticles:synthesis,stabilization,vectorization,physicochemical characterizations,and biological applications[J].Chem Rev,2008,108(6):2064-2110. [51]Liu G,Gao J,Ai H,et al.Applications and potential toxicity of magnetic iron oxide nanoparticles[J].Small,2013,9(9-10):1533-1545. [52]Lee EA,Yim H,Heo J,et al.Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering[J].Arch Pharm Res,2014,37(1):120-128. [53]Ziv-Polat O,Skaat H,Shahar A,et al.Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering[J].Int J Nanomedicine,2012(7):1259-1274. [54]Gu L,Fang RH,Sailor MJ,et al.In vivo clearance and toxicity of monodisperse iron oxide nanocrystals[J].ACS Nano,2012;6(6):4947-4954. [55]Wang Q,Shen M,Zhao T,et al.Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents[J].Sci Rep,2015(5):7774. [56]Berry CC,Wells S,Charles S,et al.Cell response to dextran-derivatised iron oxide nanoparticles post internalization[J].Biomaterials,2004,25(23):5405-5413. [57]Reddy LH,Arias JL,Nicolas J,et al.Magnetic nanoparticles:design and characterization,toxicity and biocompatibility,pharmaceutical and biomedical applications[J].Chem Rev,2012,112(11):5818-5878. [58]Hasan A,Morshed M,Memic A,et al.Nanoparticles in tissue engineering: applications, challenges and prospects[J].Int J Nanomedicine,2018(13):5637-5655. [59]Vieira S,Vial S,Reis RL,et al.Nanoparticles for bone tissue engineering[J].Biotechnol Prog,2017,33(3):590-611. [60]黄雷,杨胜松,滕星,等.外固定架临时加压交锁髓内针再次锁定治疗交锁髓内针动力化后股骨干骨折不愈合[J].中华骨科杂志,2019(1):17-22. [61]Nyberg E,Holmes C,Witham T,et al.Growth factor-eluting technologies for bone tissue engineering[J].Drug Delivery and Translational Research,2016,6(2):184-194. [62]Dimitriou R,Jones E,McGonagle D,et al.Bone regeneration:current concepts and future directions[J].BMC Med,2011(9):66. [63]Monteiro N,Martins A,Reis RL,et al.Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering[J].Regen Ther,2015(1):109-118. [64]De Witte TM,Fratila-Apachitei LE,Zadpoor AA,et al.Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices[J].Regen Biomater,2018,5(4):197-211. [65]Lim SM,Oh SH,Lee HH,et al.Dual growth factor-releasing nanoparticle/hydrogel system for cartilage tissue engineering[J].Journal of Materials Science Materials in Medicine,2010,21(9):2593. [66]Park JS,Suryaprakash S,Lao YH,et al.Engineering mesenchymal stem cells for regenerative medicine and drug delivery[J].Methods,2015(84):3-16. [67]Zhang B,Zhang PB,Wang ZL,et al.Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration[J].J Zhejiang Univ Sci B,2017,18(11):963-976. [68]Qu D,Li J,Li Y,et al.Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects[J].Journal of Biomedical Materials Research Part A,2011,96A(3):543-551. [69]Crasto GJ,Kartner N,Reznik N,et al.Controlled bone formation using ultrasound-triggered release of BMP-2 from liposomes[J].J Control Release,2016(243):99-108. [70]Ma C,Jing Y,Sun H,et al.Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration[J].Advanced Healthcare Materials,2015,4(17):2699-2708. [71]Knudsen KB,Northeved H,Kumar PE,et al.In vivo toxicity of cationic micelles and liposomes[J].Nanomedicine,2015,11(2):467-477. [72]Hasan A,Morshed M,Memic A,et al.Nanoparticles in tissue engineering:applications,challenges and prospects[J].Int J Nanomedicine,2018(13):5637-5655. [73]Blanco E,Shen H,Ferrari M.Principles of nanoparticle design for overcoming biological barriers to drug delivery[J].Nat Biotechnol,2015,33(9):941-951. [74]Ackerson RM,Shum LC,Berry AR,et al.In vivo model to measure bone repair efficacy of nanoparticle-based drug delivery[J].Orthopedics,2014,37(8):e707-e711. [75]Garcia P,Histing T,Holstein JH,et al.Rodent animal models of delayed bone healing and non-union formation:A comprehensive review[J].European Cells&Materials,2013,26(4):1-14. [76]Pinkernelle J,Raffa V,Calatayud MP,et al.Growth factor choice is critical for successful functionalization of nanoparticles[J].Front Neurosci,2015(9):305. [77]Hu JB,Song GL,Liu D,et al.Sialic acid-modified solid lipid nanoparticles as vascular endothelium-targeting carriers for ischemia-reperfusion-induced acute renal injury[J].Drug Delivery,2017,24(1):1856. [78]Kaminski GA,Sierakowski MR,Pontarolo R,et al.Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor[J].Carbohydr Polym,2016(140):129-135. [79]Wu Q,Liu C,Fan L,et al.Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers[J].Nanotechnology,2012,23(48):485703. [80]Raina DB,Qayoom I,Larsson D,et al.Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery[J].Biomaterials,2018(188):38-49.

更新日期/Last Update: 1900-01-01