[1]任静静,石 瑛,智艳芳,等.基于生物信息学分析筛选银屑病的关键基因[J].医学信息,2022,35(24):1-6.[doi:10.3969/j.issn.1006-1959.2022.24.001]
 REN Jing-jing,SHI Ying,ZHI Yan-fang,et al.Screening of Key Genes in Psoriasis Based on Bioinformatics Analysis[J].Journal of Medical Information,2022,35(24):1-6.[doi:10.3969/j.issn.1006-1959.2022.24.001]
点击复制

基于生物信息学分析筛选银屑病的关键基因()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年24期
页码:
1-6
栏目:
生物信息学
出版日期:
2022-12-15

文章信息/Info

Title:
Screening of Key Genes in Psoriasis Based on Bioinformatics Analysis
文章编号:
1006-1959(2022)24-0001-06
作者:
任静静石 瑛智艳芳
(郑州大学第三附属医院输血科1,检验科2,河南 郑州 450052)
Author(s):
REN Jing-jingSHI YingZHI Yan-fanget al.
(Department of Transfusion1,Department of Clinical Laboratory2,the Third Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan,China)
关键词:
银屑病生物信息学IL-17信号通路趋化因子
Keywords:
PsoriasisBioinformaticsIL-17 signaling pathwayChemokine
分类号:
R758.63
DOI:
10.3969/j.issn.1006-1959.2022.24.001
文献标志码:
A
摘要:
目的 利用生物信息学方法筛选银屑病的关健基因及所在信号通路,探讨其发病机制。方法 从开源性基因表达综合数据库(NCBI-GEO)中获取3个银屑病皮损和非皮损活检样本的相关数据集。利用R语言GEO Query和Limma包筛选3个数据集中差异基因(DEGs),通过R语言clusterProfiler包对DEGs进行生物学过程、信号通路分析,最后通过Cytoscape3.6.0软件做出蛋白-蛋白互作网络分析并筛选关键基因。结果 3个数据集取交集共获得共计297个共同差异基因,其中184个上调DEGs和113个下调DEGs;筛选出的10个关键基因,均为上调表达基因;KEGG信号通路主要富集于IL-17信号通路、病毒蛋白与细胞因子/受体互作通路以及趋化因子信号通路;GOBP主要富集在趋化因子的生物学过程中。结论 趋化因子及IL-17信号通路可能在银屑病的发生发展中起着重要作用,为其分子机制、诊断和生物学治疗提供指导。
Abstract:
Objective To screen the key genes and signaling pathways of psoriasis by bioinformatics methods, and to explore its pathogenesis.Methods The relevant data sets of 3 psoriatic lesion and non-lesion biopsy samples were obtained from the open source gene expression comprehensive database (NCBI-GEO). The R language GEO Query and Limma package were used to screen differentially expressed genes (DEGs) in three datasets. The R language clusterProfiler package was used to analyze the biological processes and signaling pathways of DEGs. Finally, the protein-protein interaction network was analyzed by Cytoscape 3.6.0 software and the key genes were screened.Results A total of 297 common differential genes were obtained from the intersection of the three datasets, including 184 up-regulated DEGs and 113 down-regulated DEGs; the 10 key genes screened were all up-regulated genes. The KEGG signaling pathway was mainly enriched in IL-17 signaling pathway, virus protein and cytokine/receptor interaction pathway and chemokine signaling pathway. GOBP was mainly enriched in the biological processes of chemokines.Conclusion Chemokines and IL-17 signaling pathway may play an important role in the occurrence and development of psoriasis, and provide guidance for its molecular mechanism, diagnosis and biological treatment.

参考文献/References:

[1]Armstrong AW,Read C.Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review[J].JAMA,2020,323(19):1945.[2]Griffiths CEM,Armstrong AW,Gudjonsson JE,et al.Psoriasis[J].The Lancet,2021,397(10281):1301-1315.[3]Parisi R,Iskandar IYK,Kontopantelis E,et al.National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study[J].BMJ,2020,369:m1590.[4]Korman NJ.Management of psoriasis as a systemic disease: what is the evidence?[J].British Journal of Dermatology,2020,182(4):840-848.[5]Barrett T,Wilhite SE,Ledoux P,et al.NCBI GEO: archive for functional genomics data sets-update[J].Nucleic Acids Research,2012,41(D1):D991-D995.[6]Ritchie ME,Phipson B,Wu D,et al.limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Research,2015,43(7):e47.[7]Saito R,Smoot ME,Ono K,et al.A travel guide to Cytoscape plugins[J].Nature Methods,2012,9(11):1069-1076.[8]Tsakok T,Wilson N,Dand N,et al.Association of Serum Ustekinumab Levels With Clinical Response in Psoriasis[J].JAMA Dermatology,2019,155(11):1235-1243.[9]Sommer R,Augustin M,Hilbring C,et al.Significance of chronic pruritus for intrapersonal burden and interpersonal experiences of stigmatization and sexuality in patients with psoriasis[J].Journal of the European Academy of Dermatology and Venereology,2021,35(7):1553-1561.[10]Mahalingam S,Clark K,Matthaei KI,et al.Antiviral potential of chemokines[J].Bioessays,2001,23(5):428-435.[11]Coelho AL,Hogaboam CM,Kunkel SL.Chemokines provide the sustained inflammatory bridge between innate and acquired immunity[J].Cytokine & Growth Factor Reviews,2005,16(6):553-560.[12]Yoshie O,Imai T,Nomiyama H.Chemokines in Immunity[J].Advances in Immunology,2001,78:57-110.[13]Liu K,Wu L,Yuan S,et al.Structural basis of CXC chemokine receptor 2 activation and signalling[J].Nature,2020,585(7823):135-140.[14]Ngo T,Stephens BS,Gustavsson M,et al.Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity[J].PLoS Biology,2020,18(4):e3000656.[15]Ji W,Shi H,Feng T,et al.Majie Cataplasm Promotes Th1 Response to Fight against Asthmatic Th2 Inflammation through NKs[J].Evidence Based Complementary and Alternative Medicine,2022,2022:6745420.[16]Ghoreschi K,Balato A,Enerb?覿ck C,et al.Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis[J].The Lancet,2021,397(10275):754-766.[17]Lund IK,Nielsen BS,Almholt K,et al.Concomitant lack of MMP9 and uPA disturbs physiological tissue remodeling[J].Developmental Biology,2011,358(1):56-67.[18]Wang Y,Wang J,Tang Q,et al.Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis[J].PLoS One,2021,16(2):e0247827.[19]Pitha-Rowe IF,Pitha PM.Viral defense, carcinogenesis and ISG15: Novel roles for an old ISG[J].Cytokine & Growth Factor Reviews,2007,18(5-6):409-417.[20]Andersen JB,Hassel BA.The interferon regulated ubiquitin-like protein, ISG15, in tumorigenesis: Friend or foe?[J].Cytokine & Growth Factor Reviews,2006,17(6):411-421.

相似文献/References:

[1]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
 YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(24):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[2]郑文新,刘 红,汪 伟.银屑病易感基因的生物信息分析[J].医学信息,2018,31(21):1.[doi:10.3969/j.issn.1006-1959.2018.21.001]
 ZHENG Wen-Xin,LIU Hong,WANG Wei.Bioinformatics Analysis of the Susceptible Genes of Psoriasis[J].Journal of Medical Information,2018,31(24):1.[doi:10.3969/j.issn.1006-1959.2018.21.001]
[3]操利超,张核子,余晨笛,等.CLDN11在结肠癌中的预后价值及其作为潜在免疫治疗靶点的研究[J].医学信息,2022,35(14):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
 CAO Li-chao,ZHANG He-zi,YU Chen-di,et al.The Prognostic Value of CLDN11 in Colon Cancer and its Potential Immunotherapy Targets[J].Journal of Medical Information,2022,35(24):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
[4]王婷婷,温凌杜,王子弘,等.基于DNA甲基化鉴定口腔鳞状细胞癌预后生物标志物[J].医学信息,2022,35(13):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
 WANG Ting-ting,WEN Ling-du,WANG Zi-hong,et al.Identification of Prognostic Biomarkers for Oral Squamous Cell Carcinoma Based on DNA Methylation[J].Journal of Medical Information,2022,35(24):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
[5]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
 HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(24):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[6]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
 LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(24):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[7]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
 HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(24):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[8]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
 WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(24):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[9]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
 HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(24):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
[10]谢 晗,曾同祥.IL-17在常见皮肤病中的作用[J].医学信息,2021,34(23):33.[doi:10.3969/j.issn.1006-1959.2021.23.009]
 XIE han,ZENG Tong-xiang.Role of IL-17 in Common Skin Diseases[J].Journal of Medical Information,2021,34(24):33.[doi:10.3969/j.issn.1006-1959.2021.23.009]

更新日期/Last Update: 1900-01-01