[1]张得国,梁绍栋,李洪哲,等.高通量测序结合生物信息学分析鉴定microRNA在颅内动脉瘤中的潜在作用[J].医学信息,2023,36(24):1-13.[doi:10.3969/j.issn.1006-1959.2023.24.001]
 ZHANG De-guo,LIANG Shao-dong,LI Hong-zhe,et al.Identification of the Potential Role of microRNA in Intracranial Aneurysms Based on High-throughput Sequencing Combined with Bioinformatics Analysis[J].Journal of Medical Information,2023,36(24):1-13.[doi:10.3969/j.issn.1006-1959.2023.24.001]
点击复制

高通量测序结合生物信息学分析鉴定microRNA在颅内动脉瘤中的潜在作用()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年24期
页码:
1-13
栏目:
生物信息学
出版日期:
2023-12-15

文章信息/Info

Title:
Identification of the Potential Role of microRNA in Intracranial Aneurysms Based on High-throughput Sequencing Combined with Bioinformatics Analysis
文章编号:
1006-1959(2023)24-0001-13
作者:
张得国梁绍栋李洪哲
(1.牡丹江医学院附属红旗医院神经外科,黑龙江 牡丹江 157000;2.牡丹江市第一人民医院心内科,黑龙江 牡丹江 157000)
Author(s):
ZHANG De-guoLIANG Shao-dongLI Hong-zheet al.
(1.Department of Neurosurgery,Hongqi Hospital Affiliated to Mudanjiang Medical University,Mudanjiang 157000,Heilongjiang,China;2.Department of Cardiology,Mudanjiang First People’s Hospital,Mudanjiang 157000,Heilongjiang,China)
关键词:
颅内动脉瘤微小RNA炎症微环境
Keywords:
Intracranial AneurysmmicroRNAInflammatory microenvironment
分类号:
R732.2+1
DOI:
10.3969/j.issn.1006-1959.2023.24.001
文献标志码:
A
摘要:
目的 通过二代测序技术以及生物信息学方法筛选在颅内动脉瘤(IA)中失调的miRNA,并探索其可能参与的生物学功能。方法 在GEO数据库编号为GSE66239的公共数据集中筛选IA和颞浅动脉组织间差异表达的miRNA,另外收集2021-2022年牡丹江医学院附属红旗医院收治的因颅内动脉瘤破裂出血行开颅动脉瘤夹闭术患者的IA组织和颞浅动脉组织,进行miRNA测序分析,验证公共数据集的结果。通过miRDB 数据库和miRWalk数据库对miRNA的靶基因进行预测,使用R软件包clusterProfiler进行miRNA靶基因的功能富集分析,使用STRING数据库进行蛋白-蛋白互作网络(PPI)分析,并通过Cytescape软件进行可视化,提取PPI网络中的核心基因。基于GSE122897数据集中的转录组数据,使用单样本基因集富集分析(ssGSEA)评估IA和对照组织免疫微环境中16种免疫细胞的浸润分数和12种免疫状态评分。结果 在GSE66239数据集中,相比于正常颞浅动脉组织,IA组织中有54个miRNA上调,1010个miRNA下调;临床标本中,相比于正常颞浅动脉组织,IA组织中有23个miRNA上调,29个miRNA下调。hsa-miR-3176、hsa-miR-1246和hsa-miR-539-3P在GSE66239数据集及临床标本中均呈现出IA组织的低表达。在miRDB数据库和miRWalk数据库中分别预测到738个和116个hsa-miR-539-3P靶向的mRNA,交集后得到9个靶向mRNA,407个和711个hsa-miR-1246靶向的mRNA,交集后得到34个mRNA,482个和3486个hsa-miR-3176靶向的mRNA,交集后得到187个mRNA。功能富集分析显示hsa-miR-3176、hsa-miR-1246和hsa-miR-539-3P的靶基因主要与MAPK信号通路、FGF通路、CD8+T细胞受体下游通路、S1P通路、G蛋白信号通路、ERBB信号通路、白介素信号、神经递质释放等通路有关。由hsa-miR-3176,hsa-miR-1246和hsa-miR-539-3P靶基因所构成的PPI网络当中包含121个节点,117条互作关系;其中ERBB4、FGF1、CBL、GNAO1、GNAZ、PTPRT、KCNB1、KCNJ2、POLR2J2和CD247为PPI网络当中的Top10 核心基因,这些核心基因均由hsa-miR-3176调控。功能富集分析结果显示,这些核心基因与ERBB信号通路、Rap1信号通路、MAPK信号通路、PI3K-AKT信号通路、CXCR4信号通路、CXCR3信号通路、CD8+T细胞受体信号通路等生物学过程相关。与颞浅动脉组织相比,IA当中CD8+T细胞、巨噬细胞、肥大细胞、中性粒细胞、辅助性T细胞、Th1细胞、TIL细胞以及调节性T细胞的浸润量增加,APC共刺激评分、APC共抑制评分、CCR评分、免疫检查点评分、HLA评分、促炎评分、副炎症评分、T细胞共刺激评分、T细胞共抑制评分、2型免疫反应评分均升高。相关性分析显示,核心基因与免疫细胞浸润以及免疫状态评分具有相关性。结论 hsa-miR-3176,hsa-miR-1246和hsa-miR-539-3P在IA组织中呈低表达,且其低表达会导致颅内动脉瘤的发生。
Abstract:
Objective To screen the dysregulated miRNAs in intracranial aneurysms (IA) by next-generation sequencing and bioinformatics methods, and to explore their possible biological functions.Methods The differentially expressed miRNAs between IA and superficial temporal artery tissues were screened in the public data set numbered GSE66239 in the GEO database. In addition, IA tissues and superficial temporal artery tissues of patients with rupture and hemorrhage of intracranial aneurysm who underwent craniotomy aneurysm clipping in Hongqi Hospital Affiliated to Mudanjiang Medical University from 2021 to 2022 were collected for miRNA sequencing analysis to verify the results of the public data set. The target genes of miRNAs were predicted by miRDB database and miRWalk database. The functional enrichment analysis of miRNA target genes was performed using the R software package clusterProfiler. The protein-protein interaction network (PPI) analysis was performed using the STRING database, and visualized by Cytescape software to extract the core genes in the PPI network. Based on the transcriptome data in the GSE122897 dataset, single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the infiltration scores of 16 immune cells and 12 immune status scores in the immune.Results In the GSE66239 dataset, 54 miRNAs were up-regulated and 1010 miRNAs were down-regulated in IA tissues compared with normal superficial temporal artery tissues. In clinical specimens, compared with normal superficial temporal artery tissue, 23 miRNAs were up-regulated and 29 miRNAs were down-regulated in IA tissue. hsa-miR-3176, hsa-miR-1246 and hsa-miR-539-3P showed low expression in IA tissues in GSE66239 dataset and clinical specimens. And 738 and 116 hsa-miR-539-3P-targeted mRNAs were predicted in the miRDB database and the miRWalk database, respectively, and 9 targeted mRNAs were obtained after intersection. Correspondingly, hsa-miR-1246 obtained 407 and 711 targeted mRNAs in the miRDB database and the miRWalk database, respectively, and 34 mRNAs were obtained after intersection. hsa-miR-3176 obtained 482 and 3486 targeted mRNAs in the miRDB database and the miRWalk database, respectively, and 187 mRNAs were obtained after intersection. Functional enrichment analysis showed that the target genes of the above three miRNA were mainly related to the MAPK signaling pathway, FGF pathway, CD8+T cell receptor downstream pathway, S1P pathway, G protein signaling pathway, ERBB signaling pathway, interleukin signaling, neurotransmitter release and other pathways. The PPI network composed of hsa-miR-3176, hsa-miR-1246 and hsa-miR-539-3P target genes contained 121 nodes and 117 interactions. Among them, ERBB4, FGF1, CBL, GNAO1, GNAZ, PTPRT, KCNB1, KCNJ2, POLR2J2 and CD247 are the top 10 core genes in the PPI network, and these core genes were regulated by hsa-miR-3176. Functional enrichment analysis showed that these core genes were related to ERBB signaling pathway, Rap1 signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, CXCR4 signaling pathway, CXCR3 signaling pathway, CD8+T cell receptor signaling pathway and other biological processes. Compared with superficial temporal artery tissue, the infiltration of CD8+T cells, macrophages, mast cells, neutrophils, helper T cells, Th1 cells, TIL cells and regulatory T cells in IA increased, APC co-stimulation score, APC co-inhibition score, CCR score, immune examination point score, HLA score, pro-inflammatory score, para-inflammatory score, T cell co-stimulation score, T cell co-inhibition score and type 2 immune response score increased. Correlation analysis showed that core genes were correlated with immune cell infiltration and immune status scores.Conclusion hsa-miR-3176, hsa-miR-1246 and hsa-miR-539-3P are lowly expressed in IA tissues, and their low expression will lead to the occurrence of intracranial aneurysms.

参考文献/References:

[1]Kim BJ,Lee SH,Kwun BD,et al.Intracranial Aneurysm Is Associated with High Intracranial Artery Tortuosity[J].World Neurosurgery,2018,112:e876-e880.[2]Togashi S,Shimizu H.Complex Intracranial Aneurysms[J].Advances and Technical Standards in Neurosurgery,2022,44:225-238.[3]Osmanodja F,R?觟sch J,Knott M,et al.Diagnostic Performance of 0.55 T MRI for Intracranial Aneurysm Detection[J].Investigative Radiology,2022,58(2):121-125.[4]Adamou A,Alexandrou M,Roth C,et al.Endovascular Treatment of Intracranial Aneurysms[J].Life (Basel),2021,11(4):335.[5]Fréneau M,Baron-Menguy C,Vion AC,et al.Why Are Women Predisposed to Intracranial Aneurysm?[J].Frontiers in Cardiovascular Medicine,2022,9:815668.[6]Bourcier R,Lindgren A,Desal H,et al.Concordance in Aneurysm Size at Time of Rupture in Familial Intracranial Aneurysms[J].Stroke,2019,50(2):504-506.[7]Wang M,Pan W,Xu Y,et al.Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases[J].Journal of Inflammation Research,2022,15:3083-3094.[8]Supriya M,Christopher R,Devi BI,et al.Altered MicroRNA Expression in Intracranial Aneurysmal Tissues: Possible Role in TGF-β Signaling Pathway[J].Cellular and Molecular Neurobiology,2022,42(7):2393-2405.[9]Wei L,Wang Q,Zhang Y,et al.Identification of key genes, transcription factors and microRNAs involved in intracranial aneurysm[J].Molecular Medicine Reports,2018,17(1):891-897.[10]Guo D,Wang YW,Yan L,et al.Dysregulation of microRNA-23b-3p contributes to the development of intracranial aneurysms by targeting phosphatase and tensin homolog[J].Int J Mol Med,2018,42(3):1637-1643. [11]Xu J,Yan S,Tan H,et al.The miR-143/145 cluster reverses the regulation effect of KLF5 in smooth muscle cells with proliferation and contractility in intracranial aneurysm[J].Gene,2018,679:266-273.[12]Korostynski M,Morga R,Piechota M,et al.Inflammatory Responses Induced by the Rupture of Intracranial Aneurysms Are Modulated by miRNAs[J].Molecular Neurobiology,2020,57(2):988-996.[13]Yang X,Peng J,Pang J,et al.A functional polymorphism in the promoter region of miR-155 predicts the risk of intracranial hemorrhage caused by rupture intracranial aneurysm[J].Journal of Cellular Biochemistry,2019,120(11):18618-18628.[14]Dai B,Wang F,Nie X,et al.The Cell Type-Specific Functions of miR-21 in Cardiovascular Diseases[J].Front Genet,2020,11:563166. [15]Chen Y,Wang X.miRDB:an online database for prediction of functional microRNA targets[J].Nucleic Acids Research,2020,48(D1):D127-D131.[16]Sticht C,De La Torre C,Parveen A,et al.miRWalk: An online resource for prediction of microRNA binding sites[J].PLoS One,2018,13(10):e0206239.[17]Qin S,Liu G,Jin H,et al.The comprehensive expression and functional analysis of m6A modification "readers" in hepatocellular carcinoma[J].Aging,2022,14(15):6269-6298.[18]Toth G,Cerejo R.Intracranial aneurysms: Review of current science and management[J].Vasc Med,2018,23(3):276-288. [19]Radic B,Bla?觩ekovic A,Jovanovic I,et al.Diagnostic and Therapeutic Dilemmas in The Management of Intracranial Aneurysms[J].Acta Clinica Croatica,2021,60(4):758-764.[20]Ryu J,Kim BJ,Lee KM,et al.Intracranial Arterial Tortuosity according to the Characteristics of Intracranial Aneurysms[J].World Neurosurgery,2018,120:e1185-e1192.[21]Yuan X,Bian X,Wei W,et al.miR-34a regulates phenotypic modulation of vascular smooth muscle cells in intracranial aneurysm by targeting CXCR3 and MMP-2[J].Genetics and Molecular Biology,2021,44(2):e20200124.[22]Peng W,Li J,Chen R,et al.Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway[J].Journal of Experimental & Clinical Cancer Research,2019,38(1):393.[23]Yang F,Xiong H,Duan L,et al.MiR-1246 Promotes Metastasis and Invasion of A549 cells by Targeting GSK-3β?Mediated Wnt/β-Catenin Pathway[J].Cancer Res Treat,2019,51(4):1420-1429.[24]Bhagirath D,Yang TL,Bucay N,et al.microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer[J].Cancer Res,2018,78(7):1833-1844.[25]Jiang H,Ding Y,Wu L,et al.The roles and diagnostic value of miRNA-1246 in the serum of patients with intracranial aneurysms[J].Translational Neuroscience,2022,13(1):172-180.[26]Huang YX,Li F,Liu D,et al.The expression profiling of microRNA in systemic sclerosis-associated pulmonary arterial hypertension[J].Annals of Translational Medicine,2021,9(18):1458.[27]Shen J,Wang H,Wang JS,et al.The Relationship between MicroRNA Expression Profiling in Imatinib-Resistant Cell Line K562/G and Potential Mechanism through FOXO3/Bcl-6 Signaling Pathway[J].Journal of Experimental Hematology,2022,30(1):107-112.[28]Zhang T,Deng L,Ji Y,et al.Novel long noncoding RNA (lncRNA) panel as biomarkers for prognosis in lung squamous cell carcinoma via competitive endogenous RNA (ceRNA) network analysis[J].Transl Cancer Res,2021,10(1):393-405.[29]Wang Y,Zang J,Liu C,et al.Interleukin-17 Links Inflammatory Cross-Talks Between Comorbid Psoriasis and Atherosclerosis[J].Front Immunol,2022,13:835671. [30]Zhao S,Gao J,Li J,et al.Correction to: PD-L1 Regulates Inflammation in LPS-Induced Lung Epithelial Cells and Vascular Endothelial Cells by Interacting with the HIF-1α Signaling Pathway[J].Inflammation,2022,45(2):931-932.[31]Ritzmann F,Borchardt K,Vella G,et al.Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD[J].Am J Physiol Lung Cell Mol Physiol,2021,320(5):L958-L968.[32]Zhen J,Chen W.MiR-142 inhibits cecal ligation and puncture (CLP)-induced inflammation via inhibiting PD-L1 expression in macrophages and improves survival in septic mice[J].Biomed Pharmacother,2018,97:1479-1485.

相似文献/References:

[1]吴培江,冯毅刚,欧阳文纬.SEP联合MEP监测在颅内动脉瘤夹闭术中的应用研究[J].医学信息,2018,31(02):103.[doi:10.3969/j.issn.1006-1959.2018.02.036]
 WU Pei-jiang,FENG Yi-gang,OUYANG Wen-wei.Application of Somatosensory Evoked Potentials Combined with Transcranial Electrical Stimulation of Motor Evoked Potential in Intracranial Aneurysm Clipping[J].Journal of Medical Information,2018,31(24):103.[doi:10.3969/j.issn.1006-1959.2018.02.036]
[2]蓝英勇.1.5T 3D-TOF-MRA与DSA诊断颅内动脉瘤的 研究价值对比[J].医学信息,2018,31(07):150.[doi:10.3969/j.issn.1006-1959.2018.07.052]
 LAN Ying-yong.Comparison of the Value of 1.5T 3D-TOF-MRA and DSA in Diagnosing Intracranial Aneurysms[J].Journal of Medical Information,2018,31(24):150.[doi:10.3969/j.issn.1006-1959.2018.07.052]
[3]梁 晓,马天仲.miRNAs及其靶基因在子宫内膜容受性中的作用[J].医学信息,2020,33(02):25.[doi:10.3969/j.issn.1006-1959.2020.02.008]
 LIANG Xiao,MA Tian-zhong.Study on the Role of miRNAs and its Target Genes in Endometrial Receptivity[J].Journal of Medical Information,2020,33(24):25.[doi:10.3969/j.issn.1006-1959.2020.02.008]
[4]赵振宇.miR-33表达与炎症反应的关系[J].医学信息,2020,33(02):73.[doi:10.3969/j.issn.1006-1959.2020.02.020]
 ZHAO Zhen-yu.Relationship Between miR-33 Expression and Inflammatory Response[J].Journal of Medical Information,2020,33(24):73.[doi:10.3969/j.issn.1006-1959.2020.02.020]
[5]周星辰,束汉生,王大巍,等.腰大池引流在预防颅内动脉瘤破裂术后脑血管痉挛发生中的应用价值[J].医学信息,2020,33(05):109.[doi:10.3969/j.issn.1006-1959.2020.05.034]
 ZHOU Xing-chen,SHU Han-sheng,WANG Da-wei,et al.Application Value of Lumbar Large Pond Drainage in Preventing Cerebral Vasospasm after Intracranial Aneurysm[J].Journal of Medical Information,2020,33(24):109.[doi:10.3969/j.issn.1006-1959.2020.05.034]
[6]郑 佳,张显明,罗秉翔.MSCTA对颅内动脉瘤的诊断价值[J].医学信息,2020,33(06):174.[doi:10.3969/j.issn.1006-1959.2020.06.060]
 ZHENG Jia,ZHANG Xian-ming,LUO Bing-xiang.MSCTA in the Diagnosis of Intracranial Aneurysms[J].Journal of Medical Information,2020,33(24):174.[doi:10.3969/j.issn.1006-1959.2020.06.060]
[7]李文善,张 强.颅内动脉瘤患者头痛的影响因素[J].医学信息,2020,33(13):35.[doi:10.3969/j.issn.1006-1959.2020.13.010]
 LI Wen-shan,ZHANG Qiang.Influencing Factors of Headache in Patients with Intracranial Aneurysm[J].Journal of Medical Information,2020,33(24):35.[doi:10.3969/j.issn.1006-1959.2020.13.010]
[8]张 明.miRNA及lncRNA在糖尿病肾病中的作用机制及临床诊断应用[J].医学信息,2020,33(21):58.[doi:10.3969/j.issn.1006-1959.2020.21.017]
 ZHANG Ming.The Mechanism of miRNA and lncRNA in Diabetic Nephropathy and Clinical Diagnosis Application[J].Journal of Medical Information,2020,33(24):58.[doi:10.3969/j.issn.1006-1959.2020.21.017]
[9]宋 硕,张 颖,陈国通,等.细胞周期蛋白D与女性恶性肿瘤的关系[J].医学信息,2021,34(10):36.[doi:10.3969/j.issn.1006-1959.2021.10.010]
 SONG Shuo,ZHANG Ying,CHEN Guo-tong,et al.The Relationship Between Cyclin D and Female Malignant Tumors[J].Journal of Medical Information,2021,34(24):36.[doi:10.3969/j.issn.1006-1959.2021.10.010]
[10]青 莎.人性化护理在颅内动脉瘤血管内栓塞术围手术期的护理效果[J].医学信息,2022,35(06):180.[doi:10.3969/j.issn.1006-1959.2022.06.048]
 QING Sha.Nursing Effect of Humanized Nursing in Perioperative Period of Intracranial Aneurysm Endovascular EmbolizationQING Sha[J].Journal of Medical Information,2022,35(24):180.[doi:10.3969/j.issn.1006-1959.2022.06.048]

更新日期/Last Update: 1900-01-01