[1]吴 双,王春森.费城染色体阴性骨髓增殖性肿瘤体细胞突变的研究现状[J].医学信息,2021,34(02):59-64,68.[doi:10.3969/j.issn.1006-1959.2021.02.017]
 WU Shuang,WANG Chun-sen.Research Status of Somatic Mutation in Philadelphia Chromosome-negative Myeloproliferative Neoplasms[J].Medical Information,2021,34(02):59-64,68.[doi:10.3969/j.issn.1006-1959.2021.02.017]
点击复制

费城染色体阴性骨髓增殖性肿瘤体细胞突变的研究现状()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
34卷
期数:
2021年02期
页码:
59-64,68
栏目:
综述
出版日期:
2021-01-15

文章信息/Info

Title:
Research Status of Somatic Mutation in Philadelphia Chromosome-negative Myeloproliferative Neoplasms
文章编号:
1006-1959(2021)02-0059-07
作者:
吴 双王春森
(1.川北医学院,四川 南充 637000; 2.四川省医学科学院·四川省人民医院,四川 成都 610072)
Author(s):
WU ShuangWANG Chun-sen
(1.North Sichuan Medical College,Nanchong 637000,Sichuan,China; 2.Sichuan Academy of Medical Sciences·Sichuan Provincial People’s Hospital,Chengdu610072, Sichuan,China)
关键词:
费城染色体阴性骨髓增殖性肿瘤真性红细胞增多症原发性血小板增多症原发性骨髓纤维化表型驱动突变特异性突变非特异性突变
Keywords:
Philadelphia chromosome-negative myeloproliferative neoplasmsPolycythemia veraEssential thrombocytosisPrimary myelofibrosisPhenotypic driver mutationsSpecific mutationsNon-specific mutations
分类号:
R551
DOI:
10.3969/j.issn.1006-1959.2021.02.017
文献标志码:
A
摘要:
费城染色体阴性的骨髓增殖性肿瘤是近年来研究的热点,目前该疾病基因突变的情况已经在很大程度上被发现。表型驱动基因突变活化JAK-STAT信号通路在疾病发生中起中心作用,其他参与表观遗传调控、信使RNA剪接、转录调控、细胞信号传导的基因突变与表型驱动基因突变的协同作用,在疾病中起关键作用。疾病的异质性和预后都由特定的基因组格局决定,不同的驱动基因及伴随基因突变可以导致不同的临床表型及预后,突变发生顺序不同也与不同的临床表型相关。本文主要对费城染色体阴性骨髓增殖性肿瘤的表型驱动突变、特异性与非特异性突变研究情况进行综述,旨在加强对患者突变基因的了解,帮助临床决策及评估预后。
Abstract:
Philadelphia chromosome-negative Myeloproliferative Neoplasms have been the focus in recent years.Genetic mutations have been largely discovered in the disease.Phenotypicdriven mutations activating the JAK-STAT signaling pathway plays a central role in the pathogenesis of the disease, while other gene mutations involved in epigenetic regulation, messenger RNA splicing, transcription regulation, and cell signal transduction cooperated with phenotypic driver mutationsplay a key role in the disease. Both heterogeneity and prognosis of the disease are determined by a specific genomic landscape.Different driving genes and accompanying gene mutations can lead to different clinical phenotypes and prognosis,and the different sequence of mutations is also related to different clinical phenotypes.This article mainly reviews the research status of phenotypic driver mutations, specific and non-specific mutations in Philadelphia chromosome-negative myeloproliferative neoplasms, with the aim of strengthening the understanding of patients’ mutation genes, helping clinical decision-making and evaluating prognosis.

参考文献/References:

[1]Arber D A,Orazi A,Hasserjian R,et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood,2016,127(20):2391-2405. [2]Rumi E,Harutyunyan AS,Pietra D,et al.CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis[J].Blood,2014,123(15):2416-2419. [3]Lundberg P,Nienhold R,Ambrosetti A,et al.Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms[J].Blood,2014,123(17):2744-2745. [4]Harutyunyan AS,Giambruno R,Krendl C,et al.Germline RBBP6 mutations in familialmyeloproliferative neoplasms[J].Blood,2016,127(3):362-365. [5]Rumi E,Cazzola M.Diagnosis,risk stratification,and response evaluation in classical myeloproliferative neoplasms[J].Blood,2017,129(6):680-692. [6]Vainchenker W,Kralovics R.Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms[J].Blood,2017,129(6):667-679. [7]Marneth AE,Mullally A.The Molecular Genetics of Myeloproliferative Neoplasms[J].Cold Spring Harb Perspect Med,2020,10(2):a034876. [8]Zhao R,Follows GA,Beer PA,et al.Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders[J].N Engl J Med,2008,359(26):2778-2789. [9]Chen E,Ahn JS,Massie CE,et al.JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response[J].Proc Natl Acad Sci U S A,2014,111(42):15190-15195. [10]Prestipino A,Emhardt AJ,Aumann K,et al.Oncogenic JAK2(V617F)causes PD-L1 expression,mediating immune escape in myeloproliferative neoplasms[J].Sci Transl Med,2018,10(429):eaam7729. [11]Cordua S,Kjaer L,Skov V,et al.Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population[J].Blood,2019,134(5):469-479. [12]郦梦云,晃红颖,孙爱宁,等.单中心1648例Ph染色体阴性慢性骨髓增殖性肿瘤患者JAK2、CALR及MPL基因突变的临床分析[J].中华血液学杂志,2017,38(4):295-300. [13]肖捷,潘成云,李兴明,等.ET和PV患者的临床特征及血栓和出血并发症分析[J].贵州医科大学学报,2020,45(8):943-948. [14]Tefferi A,Lasho TL,Finke CM,et al.Targeted deep sequencing in primary myelofibrosis[J].Blood Adv,2016,1(2):105-111. [15]Benton CB,Boddu PC,DiNardo CD,et al.Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia[J].Cancer,2019,125(11):1855-1866. [16]Jang MA,Choi CW.Recent insights regarding the molecular basis of myeloproliferative neoplasms[J].Korean J Intern Med,2020,35(1):1-11. [17]Merlinsky TR,Levine RL,Pronier E.Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis[J].Clin Cancer Res,2019,25(10):2956-2962. [18]Masubuchi N,Araki M,Yang Y,et al.Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface[J].Leukemia,2020,34(2):499-509. [19]Elf S,Abdelfattah NS,Chen E,et al.Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation[J].Cancer Discov,2016,6(4):368-381. [20]Marty C,Pecquet C,Nivarthi H,et al.Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis[J].Blood,2016,127(10):1317-1324. [21]Elf S,Abdelfattah NS,Baral AJ,et al.Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN[J].Blood,2018,131(7):782-786. [22]Cimen BC,Roudko V,Finnigan JP,et al.Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms[J].Cancer Discov,2019,9(9):1192-1207. [23]How J,Hobbs GS,Mullally A.Mutant calreticulin in myeloproliferative neoplasms[J].Blood,2019,134(25):2242-2248. [24]McPherson S,McMullin MF,Mills K.Epigenetics in Myeloproliferative Neoplasms[J].J Cell Mol Med,2017,21(9):1660-1667. [25]Bridgford JL,Lee SM,Lee C,et al.Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning[J].Blood,2020,135(4):287-292. [26]Defour JP,Chachoua I,Pecquet C,et al.Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515:implications for myeloproliferative neoplasms[J].Leukemia,2016,30(5):1214-1216. [27]Vainchenker W,Plo I,Marty C,et al.The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms:recent findings and potential therapeutic applications[J].Expert Rev Hematol,2019,12(6):437-448. [28]Pardanani A,Guglielmelli P,Lasho TL,et al.Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients[J].Leukemia,2011,25(12):1834-1839. [29]McNamara CJ,Panzarella T,Kennedy JA,et al.The mutational landscape of accelerated-and blast-phase myeloproliferative neoplasms impacts patient outcomes[J].Blood Adv,2018,2(20):2658-2671. [30]Coltro G,Lasho TL,Finke CM,et al.Germline SH2B3 pathogenic variant associated with myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis[J].Am J Hematol,2019,94(9):E231-E234. [31]Maslah N,Cassinat B,Verger E,et al.The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders[J].Leukemia,2017,31(8):1661-1670. [32]Tefferi A,Lasho TL,Guglielmelli P,et al.Targeted deep sequencing in polycythemia vera and essential thrombocythemia[J].Blood Adv,2016,1(1):21-30. [33]Jacquelin S,Straube J,Cooper L,et al.Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation[J].Blood,2018,132(26):2707-2721. [34]Zhang X,Su J,Jeong M,et al.DNMT3A and TET2 compete and cooperate to represslineage-specific transcription factors in hematopoietic stem cells[J].Nat Genet,2016,48(9):1014-1023. [35]Lasho TL,Mudireddy M,Finke C M,et al.Targeted next-generation sequencing in blast phase myeloproliferative neoplasms[J].Blood Adv,2018,2(4):370-380. [36]Yang H,Kurtenbach S,Guo Y,et al.Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies[J].Blood,2018,131(3):328-341. [37]Yang Y,Akada H,Nath D,et al.Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm[J].Blood,2016,127(26):3410-3423. [38]McKenney AS,Lau AN,Somasundara AVH,et al.JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition[J].J Clin Invest,2018,128(2):789-804. [39]Smeets MF,Tan SY,Xu JJ,et al.Srsf2(P95H)initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells[J].Blood,2018,132(6):608-621. [40]Lee SC,North K,Kim E,et al.Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations[J].Cancer Cell,2018,34(2):225-241. [41]Sanz GF,Ibanez M,Such E.Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS[J].Blood Adv,2019,3(21):3454-3460. [42]Park SM,Ou J,Chamberlain L,et al.U2AF35(S34F)Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3’ End Formation[J].Molecular cell,2016,62(4):479-490. [43]Tefferi A,Finke CM,Lasho TL,et al.U2AF1 mutation types in primary myelofibrosis:phenotypic and prognostic distinctions[J].Leukemia,2018,32(10):2274-2278. [44]曹晶晶,魏辉.血液系统肿瘤剪接体基因突变[J].国际输血及血液学杂志,2018,41(1):44-49. [45]Amelio I,Melino G.Context is everything:extrinsic signalling and gain-of-function p53 mutants[J].Cell death discovery,2020(6):16. [46]Grinfeld J,Nangalia J,Baxter EJ,et al.Classification and Personalized Prognosis in Myeloproliferative Neoplasms[J].N Engl J Med,2018,379(15):1416-1430. [47]Jo YS,Kim MS,Yoo NJ,et al.Intratumoral heterogeneity for inactivating frameshift mutation of CUX1 and SIRT1 genes in gastric and colorectal cancers[J].Pol J Pathol,2017,68(3):258-260. [48]Arthur RK,An N,Khan S,et al.The haploinsufficient tumor suppressor,CUX1,acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters[J].Nucleic Acids Res,2017,45(11):6350-6361. [49]Aly M,Ramdzan ZM,Nagata Y,et al.Distinct clinical and biological implications of CUX1 in myeloid neoplasms[J].Blood Adv,2019,3(14):2164-2178. [50]An N,Khan S,Imgruet MK,et al.Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS[J].Blood,2018,131(24):2682-2697. [51]Tefferi A.Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms:JAK2,MPL,TET2,ASXL1,CBL,IDH and IKZF1[J].Leukemia,2010,24(6):1128-1138. [52]Jutzi JS,Bogeska R,Nikoloski G,et al.MPN patients harbor recurrent truncating mutations in transcription factor NF-E2[J].J Exp Med,2013,210(5):1003-1019. [53]Venton G,Courtier F,Charbonnier A,et al.Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms[J].Am J Hematol,2018,93(3):330-338. [54]You X,Kong G,Ranheim EA,et al.Unique dependence on Sos1 in Kras(G12D)-induced leukemogenesis[J].Blood,2018,132(24):2575-2579. [55]Kahn JD,Miller PG,Silver AJ,et al.PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells[J].Blood,2018,132(11):1095-1105. [56]Ortmann CA,Kent DG,Nangalia J,et al.Effect of mutation order on myeloproliferative neoplasms[J].N Engl J Med,2015,372(7):601-612.

相似文献/References:

[1]尹凤雷,许卫星,李淑晨,等.骨髓增殖性肿瘤中JAK2V617F突变与Ⅰ型细胞因子受体的相关性[J].医学信息,2022,35(06):97.[doi:10.3969/j.issn.1006-1959.2022.06.024]
 YIN Feng-lei,XU Wei-xing,LI Shu-chen,et al.Correlation Between JAK2V617F Mutation and Type Ⅰ Cytokine Receptor in Myeloproliferative Neoplasms[J].Medical Information,2022,35(02):97.[doi:10.3969/j.issn.1006-1959.2022.06.024]

更新日期/Last Update: 1900-01-01