参考文献/References:
[1]Arber D A,Orazi A,Hasserjian R,et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood,2016,127(20):2391-2405. [2]Rumi E,Harutyunyan AS,Pietra D,et al.CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis[J].Blood,2014,123(15):2416-2419. [3]Lundberg P,Nienhold R,Ambrosetti A,et al.Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms[J].Blood,2014,123(17):2744-2745. [4]Harutyunyan AS,Giambruno R,Krendl C,et al.Germline RBBP6 mutations in familialmyeloproliferative neoplasms[J].Blood,2016,127(3):362-365. [5]Rumi E,Cazzola M.Diagnosis,risk stratification,and response evaluation in classical myeloproliferative neoplasms[J].Blood,2017,129(6):680-692. [6]Vainchenker W,Kralovics R.Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms[J].Blood,2017,129(6):667-679. [7]Marneth AE,Mullally A.The Molecular Genetics of Myeloproliferative Neoplasms[J].Cold Spring Harb Perspect Med,2020,10(2):a034876. [8]Zhao R,Follows GA,Beer PA,et al.Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders[J].N Engl J Med,2008,359(26):2778-2789. [9]Chen E,Ahn JS,Massie CE,et al.JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response[J].Proc Natl Acad Sci U S A,2014,111(42):15190-15195. [10]Prestipino A,Emhardt AJ,Aumann K,et al.Oncogenic JAK2(V617F)causes PD-L1 expression,mediating immune escape in myeloproliferative neoplasms[J].Sci Transl Med,2018,10(429):eaam7729. [11]Cordua S,Kjaer L,Skov V,et al.Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population[J].Blood,2019,134(5):469-479. [12]郦梦云,晃红颖,孙爱宁,等.单中心1648例Ph染色体阴性慢性骨髓增殖性肿瘤患者JAK2、CALR及MPL基因突变的临床分析[J].中华血液学杂志,2017,38(4):295-300. [13]肖捷,潘成云,李兴明,等.ET和PV患者的临床特征及血栓和出血并发症分析[J].贵州医科大学学报,2020,45(8):943-948. [14]Tefferi A,Lasho TL,Finke CM,et al.Targeted deep sequencing in primary myelofibrosis[J].Blood Adv,2016,1(2):105-111. [15]Benton CB,Boddu PC,DiNardo CD,et al.Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia[J].Cancer,2019,125(11):1855-1866. [16]Jang MA,Choi CW.Recent insights regarding the molecular basis of myeloproliferative neoplasms[J].Korean J Intern Med,2020,35(1):1-11. [17]Merlinsky TR,Levine RL,Pronier E.Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis[J].Clin Cancer Res,2019,25(10):2956-2962. [18]Masubuchi N,Araki M,Yang Y,et al.Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface[J].Leukemia,2020,34(2):499-509. [19]Elf S,Abdelfattah NS,Chen E,et al.Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation[J].Cancer Discov,2016,6(4):368-381. [20]Marty C,Pecquet C,Nivarthi H,et al.Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis[J].Blood,2016,127(10):1317-1324. [21]Elf S,Abdelfattah NS,Baral AJ,et al.Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN[J].Blood,2018,131(7):782-786. [22]Cimen BC,Roudko V,Finnigan JP,et al.Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms[J].Cancer Discov,2019,9(9):1192-1207. [23]How J,Hobbs GS,Mullally A.Mutant calreticulin in myeloproliferative neoplasms[J].Blood,2019,134(25):2242-2248. [24]McPherson S,McMullin MF,Mills K.Epigenetics in Myeloproliferative Neoplasms[J].J Cell Mol Med,2017,21(9):1660-1667. [25]Bridgford JL,Lee SM,Lee C,et al.Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning[J].Blood,2020,135(4):287-292. [26]Defour JP,Chachoua I,Pecquet C,et al.Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515:implications for myeloproliferative neoplasms[J].Leukemia,2016,30(5):1214-1216. [27]Vainchenker W,Plo I,Marty C,et al.The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms:recent findings and potential therapeutic applications[J].Expert Rev Hematol,2019,12(6):437-448. [28]Pardanani A,Guglielmelli P,Lasho TL,et al.Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients[J].Leukemia,2011,25(12):1834-1839. [29]McNamara CJ,Panzarella T,Kennedy JA,et al.The mutational landscape of accelerated-and blast-phase myeloproliferative neoplasms impacts patient outcomes[J].Blood Adv,2018,2(20):2658-2671. [30]Coltro G,Lasho TL,Finke CM,et al.Germline SH2B3 pathogenic variant associated with myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis[J].Am J Hematol,2019,94(9):E231-E234. [31]Maslah N,Cassinat B,Verger E,et al.The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders[J].Leukemia,2017,31(8):1661-1670. [32]Tefferi A,Lasho TL,Guglielmelli P,et al.Targeted deep sequencing in polycythemia vera and essential thrombocythemia[J].Blood Adv,2016,1(1):21-30. [33]Jacquelin S,Straube J,Cooper L,et al.Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation[J].Blood,2018,132(26):2707-2721. [34]Zhang X,Su J,Jeong M,et al.DNMT3A and TET2 compete and cooperate to represslineage-specific transcription factors in hematopoietic stem cells[J].Nat Genet,2016,48(9):1014-1023. [35]Lasho TL,Mudireddy M,Finke C M,et al.Targeted next-generation sequencing in blast phase myeloproliferative neoplasms[J].Blood Adv,2018,2(4):370-380. [36]Yang H,Kurtenbach S,Guo Y,et al.Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies[J].Blood,2018,131(3):328-341. [37]Yang Y,Akada H,Nath D,et al.Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm[J].Blood,2016,127(26):3410-3423. [38]McKenney AS,Lau AN,Somasundara AVH,et al.JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition[J].J Clin Invest,2018,128(2):789-804. [39]Smeets MF,Tan SY,Xu JJ,et al.Srsf2(P95H)initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells[J].Blood,2018,132(6):608-621. [40]Lee SC,North K,Kim E,et al.Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations[J].Cancer Cell,2018,34(2):225-241. [41]Sanz GF,Ibanez M,Such E.Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS[J].Blood Adv,2019,3(21):3454-3460. [42]Park SM,Ou J,Chamberlain L,et al.U2AF35(S34F)Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3’ End Formation[J].Molecular cell,2016,62(4):479-490. [43]Tefferi A,Finke CM,Lasho TL,et al.U2AF1 mutation types in primary myelofibrosis:phenotypic and prognostic distinctions[J].Leukemia,2018,32(10):2274-2278. [44]曹晶晶,魏辉.血液系统肿瘤剪接体基因突变[J].国际输血及血液学杂志,2018,41(1):44-49. [45]Amelio I,Melino G.Context is everything:extrinsic signalling and gain-of-function p53 mutants[J].Cell death discovery,2020(6):16. [46]Grinfeld J,Nangalia J,Baxter EJ,et al.Classification and Personalized Prognosis in Myeloproliferative Neoplasms[J].N Engl J Med,2018,379(15):1416-1430. [47]Jo YS,Kim MS,Yoo NJ,et al.Intratumoral heterogeneity for inactivating frameshift mutation of CUX1 and SIRT1 genes in gastric and colorectal cancers[J].Pol J Pathol,2017,68(3):258-260. [48]Arthur RK,An N,Khan S,et al.The haploinsufficient tumor suppressor,CUX1,acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters[J].Nucleic Acids Res,2017,45(11):6350-6361. [49]Aly M,Ramdzan ZM,Nagata Y,et al.Distinct clinical and biological implications of CUX1 in myeloid neoplasms[J].Blood Adv,2019,3(14):2164-2178. [50]An N,Khan S,Imgruet MK,et al.Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS[J].Blood,2018,131(24):2682-2697. [51]Tefferi A.Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms:JAK2,MPL,TET2,ASXL1,CBL,IDH and IKZF1[J].Leukemia,2010,24(6):1128-1138. [52]Jutzi JS,Bogeska R,Nikoloski G,et al.MPN patients harbor recurrent truncating mutations in transcription factor NF-E2[J].J Exp Med,2013,210(5):1003-1019. [53]Venton G,Courtier F,Charbonnier A,et al.Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms[J].Am J Hematol,2018,93(3):330-338. [54]You X,Kong G,Ranheim EA,et al.Unique dependence on Sos1 in Kras(G12D)-induced leukemogenesis[J].Blood,2018,132(24):2575-2579. [55]Kahn JD,Miller PG,Silver AJ,et al.PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells[J].Blood,2018,132(11):1095-1105. [56]Ortmann CA,Kent DG,Nangalia J,et al.Effect of mutation order on myeloproliferative neoplasms[J].N Engl J Med,2015,372(7):601-612.