[1]张心怡,张六一.MIMIC数据库研究现状与热点分析[J].医学信息,2022,35(01):19-23.[doi:10.3969/j.issn.1006-1959.2022.01.005]
 ZHANG Xin-yi,ZHANG Liu-yi.Research Status and Hot Spot Analysis of MIMIC Database[J].Medical Information,2022,35(01):19-23.[doi:10.3969/j.issn.1006-1959.2022.01.005]
点击复制

MIMIC数据库研究现状与热点分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年01期
页码:
19-23
栏目:
出版日期:
2022-01-01

文章信息/Info

Title:
Research Status and Hot Spot Analysis of MIMIC Database
文章编号:
1006-1959(2022)01-0019-05
作者:
张心怡张六一
(湖南师范大学医学院护理系,湖南 长沙 410013)
Author(s):
ZHANG Xin-yiZHANG Liu-yi
(Department of Nursing,Medical College,Hunan Normal University,Changsha 410013,Hunan,China)
关键词:
MIMIC数据库主题词研究热点词篇矩阵
Keywords:
MIMIC databaseTheme wordsResearch hotspotsWord matrix
分类号:
G353.1
DOI:
10.3969/j.issn.1006-1959.2022.01.005
文献标志码:
A
摘要:
目的 检索MIMIC数据库研究的相关文献,分析当前研究现状与热点。方法 在PubMed数据库中下载2010年1月-2020年12月有关MIMIC数据库的相关文献题录,分析文献的发表年份、来源期刊及期刊所属国家、第一作者;使用BICOMB 2.0统计主要主题词出现的频次,截取频次≥4次的高频主要主题词形成词篇矩阵,运用SPSS 22.0进行系统聚类分析。结果 关于MIMIC数据库的发文量共334篇,共有91种期刊发表了相关文献,期刊来源国家排名前3的是美国、英国、荷兰;第一作者主要分布在美国和加拿大;高频主题词有30个,通过共词聚类分析获得6个研究热点:MIMIC数据库介绍或数据处理方法的研究,ICU患者预后、死亡率预测分析,对ICU患者基本生命体征、护理信息的研究,探究某些因素是否是某些疾病的影响因子,范围较广的其他类研究,预测某种疾病的发病率或死亡率。结论 基于MIMIC数据库已经开展了很多项临床数据挖掘研究,针对护理病程记录、护理相关信息的研究还较少,今后可根据护理领域数据开展更多研究。借鉴MIMIC数据库运行机制构建符合我国患者的临床医学数据集,可有效辅助临床决策。
Abstract:
Objective To search the related literature of MIMIC database and analyze the current research status and hotspots.Methods The relevant literature titles of MIMIC database from January 2010 to December 2020 were downloaded from PubMed database, and the publication year, source journals, country and first author of the literature were analyzed. BICOMB 2.0 was used to calculate the frequency of the occurrence of the main topic words, and the high-frequency main topic words with the frequency ≥4 times were intercepted to form the discourse matrix. SPSS 22.0 was used for systematic clustering analysis.Results A total of 334 articles were published in the MIMIC database, and related articles were published in 91 journals. The top 3 journal source countries were the United States, the United Kingdom, and the Netherlands; the first authors were mainly located in the United States and Canada. There were 30 high-frequency keywords, and six research hotspots were obtained through co-word clustering analysis: the introduction of MIMIC database or the research on data processing methods, the prediction and analysis of prognosis and mortality of ICU patients, the research on basic vital signs and nursing information of ICU patients, and the exploration of whether certain factors are the influencing factors of certain diseases, other types of research with a wide range can predict the incidence or mortality of certain diseases.Conclusion Many clinical data mining studies have been carried out based on the MIMIC database, and there are few studies on nursing course records, nursing-related information, etc., and more studies can be carried out based on data in the nursing field in the future. Use the MIMIC database operating mechanism for reference to construct clinical medical data sets that are in line with patients in my country, and effectively assist clinical decision-making.

参考文献/References:

[1]Kuzniewicz MW,Vasilevskis EE,Lane R,et al.Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders[J].Chest,2008,133(6):1319-1327. [2]Mohammad A,Musselman K,Alistair J,et al.Closing the Data Loop: An Integrated Open Access Analysis Platform for the MIMIC Database[J].Comput Cardiol (2010),2016(43):137-140.[3]Johnson AE,Stone DJ,Celi LA,et al.The MIMIC Code Repository: enabling reproducibility in critical care research[J].J Am Med Inform Assoc,2018,25(1):32-39.[4]崔雷,刘伟,闫雷,等.文献数据库中书目信息共现挖掘系统的开发[J].现代图书情报技术,2008(8):70-75.[5]孙清兰.高频词与低频词的界分及词频估算法[J].中国图书馆学报,1992(2):78-81.[6]范勇.基于重症监护数据库MIMIC-Ⅲ的探索性数据分析及急性心肌梗死死亡预测分析[D].北京:中国人民解放军医学院,2018.[7]Huang J,Osorio C,Sy LW.An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes[J].Comput Methods Programs Biomed,2019(177):141-153.[8]Topaz M,Murga L,Bar-Bachar O,et al.Extracting Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data[J].Stud Health Technol Inform,2019(264):1056-1060. [9]Wang Y,Chen W,Heard K,et al.Mortality Prediction in ICUs Using A Novel Time-Slicing Cox Regression Method[J].AMIA Annu Symp Proc,2015(2015):1289-1295.[10]宋伟伦,田国祥,柳青青,等.MIMIC数据库申请、导入、结构关系及查询[J].中国循证心血管医学杂志,2018,10(10):1157-1161.[11]Lee J,Maslove DM,Dubin JA.Personalized mortality prediction driven by electronic medical data and a patient similarity metric[J].PLoS One,2015,10(5):e0127428.[12]Layeghian Javan S,Sepehri MM,Layeghian Javan M,et al.An intelligent warning model for early prediction of cardiac arrest in sepsis patients[J].Comput Methods Programs Biomed,2019(178):47-58.[13]Lin K,Hu Y,Kong G.Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model[J].Int J Med Inform,2019(125):55-61. [14]黄菩臣,练作为,陶敏,等.基于MIMIC-Ⅲ数据库对ICU患者结局预测的研究[J].中国医疗设备,2019,34(12):92-96.[15]Jain SS,Sarkar IN,Stey PC,et al.Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD[J].AMIA Annu Symp Proc,2018(2018):1319-1328. [16]Vincent JL,Nielsen ND,Shapiro NI,et al.Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database[J].Ann Intensive Care,2018,8(1):107. [17]范勇,李沛尧,张楠,等.基于大样本重症监护数据库MIMIC-Ⅲ的无创和有创血压测量一致性研究[J].北京生物医学工程,2018,37(2):122-129.[18]Luo Y,Zhang J,Li R,et al.Effects of circadian heart rate variation on short-term and long-term mortality in intensive care unit patients: a retrospective cohort study based on MIMIC-II database[J].Chinese Critical Care Medicine,2019,31(9):1128-1132.[19]王剑,张政波,王卫东,等.基于重症监护数据库MIMIC-Ⅱ的临床数据挖掘研究[J].中国医疗器械杂志,2014,38(6):402-406.[20]Ding EY,Albuquerque D,Winter M,et al.Novel Method of Atrial Fibrillation Case Identification and Burden Estimation Using the MIMIC-III Electronic Health Data Set[J].J Intensive Care Med,2019,34(10):851-857.[21]Li S,Hu X,Xu J,et al.Increased body mass index linked to greater short- and long-term survival in sepsis patients: A retrospective analysis of a large clinical database[J].Int J Infect Dis,2019(87):109-116.[22]Hsu DJ,Feng M,Kothari R,et al.The association between indwelling arterial catheters and mortality in hemodynamically stable patients with respiratory failure[J].Chest,2015,148(6):1470-1476.[23]Wang B,Li D,Gong Y,et al.Association of serum total and ionized calcium with all-cause mortality incritically ill patients with acute kidney injury[J].Clin Chim Acta,2019(494):94-99.[24]Han YQ,Yan L,Zhang L,et al.Red blood cell distribution width provides additional prognostic value beyond severity scores in adult critical illness[J].Clin Chim Acta,2019(498):62-67. [25]Wang B,Lu H,Gong Y,et al.The Association between Red Blood Cell Distribution Width and Mortality in Critically Ill Patients with Acute Kidney Injury[J].Biomed Res Int,2018(2018):9658216. [26]Wang B,Aihemaiti G,Cheng B,et al.Red Blood Cell Distribution Width Is Associated with All-Cause Mortality in Critically Ill Patients with Cardiogenic Shock[J].Med Sci Monit,2019(25):7005-7015.[27]王帅,于璐,沙宪政.MIMIC数据库下连续无创收缩压测量[J].电脑与信息技术,2015,23(3):34-36.[28]Zhang S,Zhang K,Yu Y,et al.A new prediction model for assessing the clinical outcomes of ICU patients with community-acquired pneumonia: a decision tree analysis[J].Annals of Medicine,2019,51(1):41-50.[29]Wang J,Liu T,Sun Y,et al.Construction of multi-parameter emergency database and preliminary application research [J].Journal of Biomedical Engineering,2019,36(5):818-826.[30]周蜜果,张平,窦丹波,等.MIMICⅢ数据库特征分析及对构建共享中医数据集的启示[J].中国中医药图书情报杂志,2019,43(6):1-5.[31]马菲.基于指端脉搏波的血压测量方法及其在智能终端的初步实践[D].杭州:浙江大学,2017.[32]王涛.EEMD算法研究及呼吸频率测量仪实现[D].北京:北京信息科技大学,2017.[33]Calvert JS,Price DA,Chettipally UK,et al.A computational approach to early sepsis detection[J].Comput Biol Med,2016,74(1):69-73.[34]Ghosh S,Feng M,Nguyen H,et al.Hypotension Risk Prediction via Sequential Contrast Patterns of ICU Blood Pressure[J].IEEE J Biomed Health Inform,2016,20(5):1416-1426. [35]Taoum A,Mourad-Chehade F,Amoud H.Early-warning of ARDS using novelty detection and data fusion[J].Comput Biol Med,2018,102(1):191-199.[36]冯靖杰.穿戴式核心体温和连续血压测量关键技术的研究[D].杭州:浙江大学,2018.

更新日期/Last Update: 1900-01-01