参考文献/References:
[1]Kuzniewicz MW,Vasilevskis EE,Lane R,et al.Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders[J].Chest,2008,133(6):1319-1327. [2]Mohammad A,Musselman K,Alistair J,et al.Closing the Data Loop: An Integrated Open Access Analysis Platform for the MIMIC Database[J].Comput Cardiol (2010),2016(43):137-140.[3]Johnson AE,Stone DJ,Celi LA,et al.The MIMIC Code Repository: enabling reproducibility in critical care research[J].J Am Med Inform Assoc,2018,25(1):32-39.[4]崔雷,刘伟,闫雷,等.文献数据库中书目信息共现挖掘系统的开发[J].现代图书情报技术,2008(8):70-75.[5]孙清兰.高频词与低频词的界分及词频估算法[J].中国图书馆学报,1992(2):78-81.[6]范勇.基于重症监护数据库MIMIC-Ⅲ的探索性数据分析及急性心肌梗死死亡预测分析[D].北京:中国人民解放军医学院,2018.[7]Huang J,Osorio C,Sy LW.An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes[J].Comput Methods Programs Biomed,2019(177):141-153.[8]Topaz M,Murga L,Bar-Bachar O,et al.Extracting Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data[J].Stud Health Technol Inform,2019(264):1056-1060. [9]Wang Y,Chen W,Heard K,et al.Mortality Prediction in ICUs Using A Novel Time-Slicing Cox Regression Method[J].AMIA Annu Symp Proc,2015(2015):1289-1295.[10]宋伟伦,田国祥,柳青青,等.MIMIC数据库申请、导入、结构关系及查询[J].中国循证心血管医学杂志,2018,10(10):1157-1161.[11]Lee J,Maslove DM,Dubin JA.Personalized mortality prediction driven by electronic medical data and a patient similarity metric[J].PLoS One,2015,10(5):e0127428.[12]Layeghian Javan S,Sepehri MM,Layeghian Javan M,et al.An intelligent warning model for early prediction of cardiac arrest in sepsis patients[J].Comput Methods Programs Biomed,2019(178):47-58.[13]Lin K,Hu Y,Kong G.Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model[J].Int J Med Inform,2019(125):55-61. [14]黄菩臣,练作为,陶敏,等.基于MIMIC-Ⅲ数据库对ICU患者结局预测的研究[J].中国医疗设备,2019,34(12):92-96.[15]Jain SS,Sarkar IN,Stey PC,et al.Using Demographic Factors and Comorbidities to Develop a Predictive Model for ICU Mortality in Patients with Acute Exacerbation COPD[J].AMIA Annu Symp Proc,2018(2018):1319-1328. [16]Vincent JL,Nielsen ND,Shapiro NI,et al.Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database[J].Ann Intensive Care,2018,8(1):107. [17]范勇,李沛尧,张楠,等.基于大样本重症监护数据库MIMIC-Ⅲ的无创和有创血压测量一致性研究[J].北京生物医学工程,2018,37(2):122-129.[18]Luo Y,Zhang J,Li R,et al.Effects of circadian heart rate variation on short-term and long-term mortality in intensive care unit patients: a retrospective cohort study based on MIMIC-II database[J].Chinese Critical Care Medicine,2019,31(9):1128-1132.[19]王剑,张政波,王卫东,等.基于重症监护数据库MIMIC-Ⅱ的临床数据挖掘研究[J].中国医疗器械杂志,2014,38(6):402-406.[20]Ding EY,Albuquerque D,Winter M,et al.Novel Method of Atrial Fibrillation Case Identification and Burden Estimation Using the MIMIC-III Electronic Health Data Set[J].J Intensive Care Med,2019,34(10):851-857.[21]Li S,Hu X,Xu J,et al.Increased body mass index linked to greater short- and long-term survival in sepsis patients: A retrospective analysis of a large clinical database[J].Int J Infect Dis,2019(87):109-116.[22]Hsu DJ,Feng M,Kothari R,et al.The association between indwelling arterial catheters and mortality in hemodynamically stable patients with respiratory failure[J].Chest,2015,148(6):1470-1476.[23]Wang B,Li D,Gong Y,et al.Association of serum total and ionized calcium with all-cause mortality incritically ill patients with acute kidney injury[J].Clin Chim Acta,2019(494):94-99.[24]Han YQ,Yan L,Zhang L,et al.Red blood cell distribution width provides additional prognostic value beyond severity scores in adult critical illness[J].Clin Chim Acta,2019(498):62-67. [25]Wang B,Lu H,Gong Y,et al.The Association between Red Blood Cell Distribution Width and Mortality in Critically Ill Patients with Acute Kidney Injury[J].Biomed Res Int,2018(2018):9658216. [26]Wang B,Aihemaiti G,Cheng B,et al.Red Blood Cell Distribution Width Is Associated with All-Cause Mortality in Critically Ill Patients with Cardiogenic Shock[J].Med Sci Monit,2019(25):7005-7015.[27]王帅,于璐,沙宪政.MIMIC数据库下连续无创收缩压测量[J].电脑与信息技术,2015,23(3):34-36.[28]Zhang S,Zhang K,Yu Y,et al.A new prediction model for assessing the clinical outcomes of ICU patients with community-acquired pneumonia: a decision tree analysis[J].Annals of Medicine,2019,51(1):41-50.[29]Wang J,Liu T,Sun Y,et al.Construction of multi-parameter emergency database and preliminary application research [J].Journal of Biomedical Engineering,2019,36(5):818-826.[30]周蜜果,张平,窦丹波,等.MIMICⅢ数据库特征分析及对构建共享中医数据集的启示[J].中国中医药图书情报杂志,2019,43(6):1-5.[31]马菲.基于指端脉搏波的血压测量方法及其在智能终端的初步实践[D].杭州:浙江大学,2017.[32]王涛.EEMD算法研究及呼吸频率测量仪实现[D].北京:北京信息科技大学,2017.[33]Calvert JS,Price DA,Chettipally UK,et al.A computational approach to early sepsis detection[J].Comput Biol Med,2016,74(1):69-73.[34]Ghosh S,Feng M,Nguyen H,et al.Hypotension Risk Prediction via Sequential Contrast Patterns of ICU Blood Pressure[J].IEEE J Biomed Health Inform,2016,20(5):1416-1426. [35]Taoum A,Mourad-Chehade F,Amoud H.Early-warning of ARDS using novelty detection and data fusion[J].Comput Biol Med,2018,102(1):191-199.[36]冯靖杰.穿戴式核心体温和连续血压测量关键技术的研究[D].杭州:浙江大学,2018.