[1]周 琳,任丽君,白 云.2016-2019年北京市石景山区流感监测结果分析[J].医学信息,2024,37(13):44-48.[doi:10.3969/j.issn.1006-1959.2024.13.008]
 Analysis of Influenza Surveillance Results in Shijingshan District of Beijing from 0 to 09.Analysis of Influenza Surveillance Results in Shijingshan District of Beijing from 2016 to 2019[J].Journal of Medical Information,2024,37(13):44-48.[doi:10.3969/j.issn.1006-1959.2024.13.008]
点击复制

2016-2019年北京市石景山区流感监测结果分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
37卷
期数:
2024年13期
页码:
44-48
栏目:
公共卫生信息学
出版日期:
2024-07-01

文章信息/Info

Title:
Analysis of Influenza Surveillance Results in Shijingshan District of Beijing from 2016 to 2019
文章编号:
1006-1959(2024)13-0044-05
作者:
周 琳任丽君白 云
(北京市石景山区疾病预防控制中心流行病科,北京 100043)
Author(s):
Analysis of Influenza Surveillance Results in Shijingshan District of Beijing from 2016 to 2019
(Department of Epidemiology,Beijing Shijingshan District Center for Disease Control and Prevention,Beijing 100043,China)
关键词:
流感监测流感样病例病原学
Keywords:
Influenza monitoringInfluenza-like illnessEtiological
分类号:
R511
DOI:
10.3969/j.issn.1006-1959.2024.13.008
文献标志码:
A
摘要:
目的 分析北京市石景山区2016-2019年流感监测数据,了解流感的流行特征和病原学变化规律,为石景山区流感防控提供科学依据。方法 收集2016年7月-2019年6月石景山区流感监测哨点医院的流感样病例(ILI)报告及病原学监测数据,采用描述性流行病学及统计学方法进行汇总分析。结果 2016年7月-2019年6月,北京市石景山区累计报告流感样病例58 107例,ILI百分比为0.90%。冬春季是历年ILI报告高峰;共采集ILI咽拭子样本2119件,检出流感病毒核酸阳性样本375件,阳性检出率为17.70%,其中A(H3N2)亚型148件(39.47%),甲型H1N1亚型108件(28.80%),B(Victoria)型76件(20.27%),B(Yamagata)型39件(10.40%),混合阳性4件(1.07%)。3个监测年度ILI报告数最多的组为25~59岁组,合计25 719例,占ILI总数的44.26%。2016-2017年优势流行毒株为A(H3N2)亚型(80.61%),其次为甲型H1N1(19.39%),未检出乙型流感病毒。2017-2018年优势流行毒株为甲型H1N1(32.11%)、A(H3N2)亚型(26.61%)、B(Yamagata)型(35.78%)。2018-2019年优势流行毒株为甲型H1N1(35.71%)和B(Victoria)型(42.86%)。结论 北京市石景山区流感病毒流行季节为冬春季,2016-2019年各监测年度流感病毒流行强度各异。应长期、持续地做好流感病毒的监测工作,及时发现流行趋势变化情况,及早采取防控举措,降低危害。
Abstract:
Objective To analyze the influenza surveillance data in Shijingshan District of Beijing from 2016 to 2019, understand the epidemiological characteristics and etiological changes of influenza, and provide scientific basis for influenza prevention and control in Shijingshan District.Methods The influenza-like illness (ILI) report and etiological monitoring data of influenza surveillance sentinel hospitals in Shijingshan District from July 2016 to June 2019 were collected and analyzed by descriptive epidemiology and statistical methods.Results From July 2016 to June 2019, a total of 58 107 influenza-like cases were reported in Shijingshan District of Beijing, with an ILI percentage of 0.90%. Winter and spring were the peak of ILI reports over the years. A total of 2119 throat swab samples of ILI were collected, and 375 influenza virus nucleic acid positive samples were detected, with a positive detection rate of 17.70%. Among them, 148 (39.47%) were subtype A (H3N2), 108 (28.80%) were subtype A (H1N1), 76 (20.27%) were type B (Victoria), 39 (10.40%) were type B (Yamagata), and 4 (1.07%) were mixed positive. The highest number of ILI reports in the three monitoring years was 25-59 years old group, with a total of 25 719 cases, accounting for 44.26% of the total number of ILI. The dominant epidemic strain in 2016-2017 was subtype A (H3N2) (80.61%), followed by influenza A (H1N1) (19.39%), and influenza B virus was not detected. The dominant epidemic strains in 2017-2018 were influenza A (H1N1) (32.11%), subtype A (H3N2) (26.61%) and type B (Yamagata) (35.78%). The dominant epidemic strains in 2018-2019 were influenza A (H1N1) (35.71%) and type B (Victoria) (42.86%).Conclusion The epidemic season of influenza virus in Shijingshan District of Beijing is winter and spring, and the epidemic intensity of influenza virus is different in each monitoring year from 2016 to 2019. Long-term and continuous monitoring of influenza viruses should be carried out to detect changes in epidemic trends in time, and early prevention and control measures should be taken to reduce the harm.

参考文献/References:

[1]国家卫生健康委办公厅,国家中医药管理局办公室. 流行性感冒诊疗方案(2020年版)[J].中国病毒病杂志,2021,11(1):1-5.[2]李兰娟,任红.传染病学[M].9版.北京:人民卫生出版社,2018:67-68.[3]Li L,Liu YN,Wu P,et al.Influenza-associated excess respiratorymortality in China,2010-2015: a population-based study[J].The Lancet Public Health,2019,4(9):e473-e481.[4]陈涛,杨静,韩雅俊,等.2010-2016年度中国流感监测网络质量评估结果分析研究[J].中国人兽共患病学报,2023,39(2):140-146.[5]秦康,张业武,张鹏,等.中国大陆三种流感监测数据的时效性比较[J].中华疾病控制杂志,2019,32(4):387-391.[6]陈也佳,熊志军,王淼,等.2015-2019年甘肃省天水市流感样病例监测结果分析[J].现代医药卫生,2021,37(6):1012-1015.[7]杨世宏,陈禹存,张倩文.2008-2018年大连市流感特征分析[J].预防医学论坛,2019,25(2):145-147.[8]金丽娜,史凤琳,张恒,等.2017-2018年北京市海淀区流行性感冒监测数据病原学分析[J].传染病信息.2020,33(4):337-339,382.[9]杨雄,肖征,吴双胜,等.2015-2018年北京市西城区流感样病例监测情况分析[J].医学动物防制,2020,36(7):693-696.[10]中国疾病预防控制中心.中国流感疫苗预防接种技术指南(2022-2023)[J].中国病毒病杂志,2023,13(1):1-19.[11]郭倩,陈涛,周罗晶.季节性流感与气象因素相关性的系统评价[J].疾病监测,2020,35(12):1081-1087.[12]李艳君.气象因素对呼吸性传染病的发病分布影响及非药物干预措施对法定报告传染病监测影响的时间序列分析[D].沈阳:中国医科大学,2021.[13]杨丽丽,杨艳娜,郗璐.2016年-2021年北京市通州区流感监测情况分析[J].牡丹江医学院学报,2022,43(4):58-61,19.[14]金丽娜,史凤琳,赵燕航,等.2016-2020年度北京市海淀区流行性感冒流行特征分析[J].首都公共卫生,2021,15(4):224-227.[15]段玮,孙瑛,杨鹏,等.2012-2015年北京市流感监测分析[J].首都公共卫生,2016,10(2):54-57.[16]Zhang Y,Muscatello DJ,Wang Q,et al.Overview of influenza vaccination policy in Beijing,China: current status and future prospects[J].J Public Health Policy,2017,38(3):366-379.[17]史芸萍,李刚,刘洋,等.北京市2015-2018年法定呼吸道传染病流行特征分析[J].中华疾病控制杂志,2020,24(1):97-100,113.[18]孙世月,张煜.呼吸道传染病疫情背景下的民众社交距离保持行为[J].心理科学进展,2022,30(7):1612-1625.[19]白云,任丽君,周琳.2010-2017年北京市石景山区中小学校和托幼园所集中发热疫情流行特征分析[J].传染病信息,2018,31(4):334-337.[20]曹达魁,王海琴.2011-2019监测年度全国流感暴发疫情流行病学特征分析[J].实用预防医学,2021,28(9):1098-1100.[21]孙瑛,杨鹏,张莉,等.北京市2018-2019年流感流行季集中发热疫情特征分析[J].国际病毒学杂志,2020,27(1):19-22.

相似文献/References:

[1]刘 莉,马永娟,刘 丹,等.2019年度佳木斯市流感监测季流行病学及病原学检测结果分析[J].医学信息,2021,34(03):154.[doi:10.3969/j.issn.1006-1959.2021.03.043]
 LIU Li,MA Yong-juan,LIU Dan,et al.Analysis of Epidemiological and Pathogenic Test Results of the 2019 Influenza Surveillance Season in Jiamusi City[J].Journal of Medical Information,2021,34(13):154.[doi:10.3969/j.issn.1006-1959.2021.03.043]
[2]杨 柳,袁 超,王素霞.基于医院HIS数据的流感特征分析[J].医学信息,2023,36(17):50.[doi:10.3969/j.issn.1006-1959.2023.17.009]
 YANG Liu,YUAN Chao,WANG Su-xia.Analysis of Influenza Characteristics Based on Hospital HIS Data[J].Journal of Medical Information,2023,36(13):50.[doi:10.3969/j.issn.1006-1959.2023.17.009]

更新日期/Last Update: 1900-01-01