[1]李晓松,黄 霄,张亚洲,等.基于生物信息学的阿尔兹海默病线粒体相关Hub基因的筛选[J].医学信息,2025,38(09):1-7.[doi:10.3969/j.issn.1006-1959.2025.09.001]
 LI Xiaosong,HUANG Xiao,ZHANG Yazhou,et al.Screening of Mitochondrial-related Hub Genes in Alzheimer’s Disease Based on Bioinformatics[J].Journal of Medical Information,2025,38(09):1-7.[doi:10.3969/j.issn.1006-1959.2025.09.001]
点击复制

基于生物信息学的阿尔兹海默病线粒体相关Hub基因的筛选()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
38卷
期数:
2025年09期
页码:
1-7
栏目:
生物信息学
出版日期:
2025-05-01

文章信息/Info

Title:
Screening of Mitochondrial-related Hub Genes in Alzheimer’s Disease Based on Bioinformatics
文章编号:
1006-1959(2025)09-0001-07
作者:
李晓松黄 霄张亚洲李 瑞李寅臻王 奎
石河子大学医学院预防医学系,新疆 石河子 832000
Author(s):
LI Xiaosong HUANG Xiao ZHANG Yazhou LI Rui LI Yinzhen WANG Kui
Department of Preventive Medicine, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
关键词:
生物信息学阿尔兹海默病线粒体枢纽基因
Keywords:
Bioinformatics Alzheimer’s disease Mitochondria Hub genes
分类号:
R749.1
DOI:
10.3969/j.issn.1006-1959.2025.09.001
文献标志码:
A
摘要:
目的 利用生物信息分析方法筛选与阿尔兹海默病相关的线粒体枢纽基因,并分析其功能。方法 从美国国立生物技术信息中心GEO数据库中下载阿尔兹海默病基因芯片数据集,通过差异表达分析和加权基因共表达网络分析筛选出阿尔兹海默病的枢纽基因,在MitoCarta3.0数据库中获取线粒体相关基因,与上述枢纽基因取交集,对交集基因进行富集分析,并利用String数据库构建蛋白互作网络,将结果导入Cytoscape软件,通过MCC算法筛选出Degree排名前6位的基因。结果 经差异表达分析筛选出380个下调基因和279个上调基因,经加权基因共表达网络分析筛选出1073个基因,与线粒体基因取交集得到15个线粒体相关基因。GO富集分析显示其主要参与线粒体形态的改变、线粒体基因组的复制、新线粒体组分的合成和线粒体的物质转运等生物学过程。KEGG通路富集分析显示其主要富集于帕金森病、亨廷顿舞蹈症、丙酸代谢和胆固醇代谢等通路。利用Cytoscape软件最终筛选出6个与阿尔兹海默病相关的线粒体枢纽基因:VDAC1、TOMM20、CISD1、OPA1、NDUFAB1、TSPO。结论 通过阿尔兹海默病基因芯片数据集并结合多种生物信息分析方法鉴定出6个线粒体枢纽基因,为线粒体功能障碍在阿尔兹海默病中的作用提供理论依据。
Abstract:
Objective To screen mitochondrial hub genes associated with Alzheimer’s disease by bioinformatics analysis and analyze their functions. Methods The Alzheimer’s disease gene chip dataset was downloaded from the GEO database of the National Center for Biotechnology Information in the United States. The hub genes of Alzheimer’s disease were screened through differential expression analysis and weighted gene co-expression network analysis. The mitochondrial related genes were obtained from the MitoCarta 3.0 database and intersected with the aforementioned hub genes. The intersection genes were enriched and analyzed, and a protein interaction network was constructed using the String database. The results were imported into Cytoscape software, and the top 6 genes ranked in Degree were screened using the MCC algorithm. Results A total of 380 down-regulated genes and 279 up-regulated genes were screened by differential expression analysis. A total of 1073 genes were screened by weighted gene co-expression network analysis, and 15 mitochondrial-related genes were obtained by intersection with mitochondrial genes. GO enrichment analysis showed that it was mainly involved in biological processes such as changes in mitochondrial morphology, replication of mitochondrial genome, synthesis of new mitochondrial components, and mitochondrial material transport. KEGG pathway enrichment analysis showed that it was mainly enriched in Parkinson’s disease, Huntington ’s disease, propionic acid metabolism and cholesterol metabolism. Finally, six mitochondrial hub genes related to Alzheimer ’s disease were screened by Cytoscape software: VDAC1, TOMM20, CISD1, OPA1, NDUFAB1, TSPO. Conclusion Through the Alzheimer’s disease gene chip data set and combined with a variety of bioinformatics analysis methods, six mitochondrial hub genes have identified, which can provide a theoretical basis for the role of mitochondrial dysfunction in Alzheimer’s disease.

参考文献/References:

[1]Knopman DS,Amieva H,Petersen RC,et al.Alzheimer disease[J].Nat Rev Dis Primers,2021,7(1):33.[2]Jia L,Du Y,Chu L,et al.Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J].Lancet Public Health,2020,5(12):e661-e671.[3]王英全,梁景宏,贾瑞霞,等.2020-2050年中国阿尔茨海默病患病情况预测研究[J].阿尔茨海默病及相关病,2019,2(1):289-298.[4]Self WK,Holtzman DM.Emerging diagnostics and therapeutics for Alzheimer disease[J].Nat Med,2023,29(9):2187-2199.[5]Sbai O,Bazzani V,Tapaswi S,et al.Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer’s disease?[J].Front Mol Neurosci,2023,16:1166879.[6]Zhang H,Wei W,Zhao M,et al.Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease[J].Int J Biol Sci,2021,17(9):2181-2192.[7]Busche MA,Hyman BT.Synergy between amyloid-β and tau in Alzheimer’s disease[J].Nat Neurosci,2020,23(10):1183-1193.[8]Fan L,Mao C,Hu X,et al.New Insights Into the Pathogenesisof Alzheimer’s Disease[J].Front Neurol,2020,10:1312.[9]Ashleigh T,Swerdlow RH,Beal MF.The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis[J].Alzheimers Dement,2023,19(1):333-342.[10]Hu H,Guo L,Overholser J,et al.Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities[J].Cells,2022,11(19):3174.[11]Xian H,Watari K,Sanchez-Lopez E,et al.Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J].Immunity,2022,55(8):1370-1385.e8.[12]Chu Y,Goldman JG,Kelly L,et al.Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease[J].Neurobiol Dis,2014,69:1-14.[13]Smilansky A,Dangoor L,Nakdimon I,et al.The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy[J].J Biol Chem,2015,290(52):30670-30683.[14]Yin L,Ye Y,Zou L,et al.AR antagonists develop drug resistance through TOMM20 autophagic degradation-promoted transformation to neuroendocrine prostate cancer[J].J Exp Clin Cancer Res,2023,42(1):204.[15]Park SH,Lee AR,Choi K,et al.TOMM20 as a potential therapeutic target of colorectal cancer[J].BMB Rep,2019,52(12):712-717.[16]Teixeira FR,Randle SJ,Patel SP,et al.Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease[J].Biochem J,2016,473(20):3563-3580.[17]Xiong X,Li S,Han TL,et al.Study of mitophagy and ATP-related metabolomics based on β-amyloid levels in Alzheimer’s disease[J].Exp Cell Res,2020,396(1):112266.[18]Geldenhuys WJ,Leeper TC,Carroll RT.mitoNEET as a novel drug target for mitochondrial dysfunction[J].Drug Discov Today,2014,19(10):1601-1606.[19]Yuan H,Li X,Zhang X,et al.CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J].Biochem Biophys Res Commun,2016,478(2):838-844.[20]Martinez A,Sanchez-Martinez A,Pickering JT,et al.Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models[J].Mol Neurodegener,2024,19(1):12.[21]Nyenhuis SB,Wu X,Strub MP,et al.OPA1 helical structures give perspective to mitochondrial dysfunction[J].Nature,2023,620(7976):1109-1116.[22]Del Dotto V,Fogazza M,Carelli V,et al.Eight human OPA1 isoforms, long and short: What are they for?[J].Biochim Biophys Acta Bioenerg,2018,1859(4):263-269.[23]von der Malsburg A,Sapp GM,Zuccaro KE,et al.Structural mechanism of mitochondrial membrane remodelling by human OPA1[J].Nature,2023,620(7976):1101-1108.[24]Gao J,Wang L,Liu J,et al.Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases[J].Antioxidants (Basel),2017,6(2):25.[25]Zhang R,Hou T,Cheng H,et al.NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism[J].FASEB J,2019,33(12):13310-13322.[26]Hou T,Zhang R,Jian C,et al.NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly[J].Cell Res,2019,29(9):754-766.[27]Otowa T,Maher BS,Aggen SH,et al.Genome-wide and gene-based association studies of anxiety disorders in European and African American samples[J].PLoS One,2014,9(11):e112559.[28]Liang D,Ning M,Xie H,et al.Radiotherapy Side Effects: Comprehensive Proteomic Study Unraveled Neural Stem Cell Degenerative Differentiation upon Ionizing Radiation[J].Biomolecules,2022,12(12):1759.[29]Cheung G,Lin YC,Papadopoulos V.Translocator protein in the rise and fall of central nervous system neurons[J].Front Cell Neurosci,2023,17:1210205.[30]Fairley LH,Lai KO,Wong JH,et al.Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease[J].Proc Natl Acad Sci U S A,2023,120(8):e2209177120.[31]Tournier BB,Tsartsalis S,Rigaud D,et al.TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease[J].Neurobiol Dis,2019,121:95-105.

相似文献/References:

[1]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
 YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(09):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[2]操利超,张核子,余晨笛,等.CLDN11在结肠癌中的预后价值及其作为潜在免疫治疗靶点的研究[J].医学信息,2022,35(14):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
 CAO Li-chao,ZHANG He-zi,YU Chen-di,et al.The Prognostic Value of CLDN11 in Colon Cancer and its Potential Immunotherapy Targets[J].Journal of Medical Information,2022,35(09):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
[3]王婷婷,温凌杜,王子弘,等.基于DNA甲基化鉴定口腔鳞状细胞癌预后生物标志物[J].医学信息,2022,35(13):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
 WANG Ting-ting,WEN Ling-du,WANG Zi-hong,et al.Identification of Prognostic Biomarkers for Oral Squamous Cell Carcinoma Based on DNA Methylation[J].Journal of Medical Information,2022,35(09):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
[4]桑星晨.黄芩的化学成分及治疗阿尔兹海默病的研究进展[J].医学信息,2019,32(13):52.[doi:10.3969/j.issn.1006-1959.2019.13.016]
 SANG Xing-chen.Advances in Research on Chemical Constituents of Astragalus and Treatment of Alzheimer's Disease[J].Journal of Medical Information,2019,32(09):52.[doi:10.3969/j.issn.1006-1959.2019.13.016]
[5]黄梦倩,张瑞恒,刘楚浩,等.影像组学在神经系统疾病中的应用研究[J].医学信息,2019,32(16):47.[doi:10.3969/j.issn.1006-1959.2019.16.015]
 HUANG Meng-qian,ZHANG Rui-heng,LIU Chu-hao,et al.Application of Radiomics in Nervous System Diseases[J].Journal of Medical Information,2019,32(09):47.[doi:10.3969/j.issn.1006-1959.2019.16.015]
[6]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
 HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(09):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[7]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
 LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(09):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[8]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
 HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(09):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[9]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
 WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(09):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[10]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
 HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(09):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]

更新日期/Last Update: 1900-01-01