[1]卢亚凤,殷 梅,容 伟.线粒体自噬对阻塞性睡眠呼吸暂停综合征大鼠海马神经元的影响[J].医学信息,2020,(11):72-75.[doi:10.3969/j.issn.1006-1959.2020.11.022]
 LU Ya-feng,YIN Mei,RONG Wei.Effect of Mitochondrial Autophagy on Hippocampal Neurons in Rats with Obstructive Sleep Apnea Syndrome[J].Medical Information,2020,(11):72-75.[doi:10.3969/j.issn.1006-1959.2020.11.022]
点击复制

线粒体自噬对阻塞性睡眠呼吸暂停综合征大鼠海马神经元的影响()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
期数:
2020年11期
页码:
72-75
栏目:
综述
出版日期:
2020-06-01

文章信息/Info

Title:
Effect of Mitochondrial Autophagy on Hippocampal Neurons in Rats with Obstructive Sleep Apnea Syndrome
文章编号:
1006-1959(2020)11-0072-04
作者:
卢亚凤殷 梅容 伟
(昆明医科大学第二附属医院神经内科,云南 昆明 650101)
Author(s):
LU Ya-fengYIN MeiRONG Wei
(Department of Neurology,the Second Affiliated Hospital of Kunming Medical University,Kunming 650101,Yunnan,China)
关键词:
阻塞性睡眠呼吸暂停综合征线粒体自噬海马神经元
Keywords:
Obstructive sleep apnea syndromeMitochondrial autophagyHippocampal neurons
分类号:
R742;R741.02
DOI:
10.3969/j.issn.1006-1959.2020.11.022
文献标志码:
A
摘要:
目的 探讨线粒体自噬对阻塞性睡眠呼吸暂停综合征(OSAS)大鼠海马神经元的影响。方法 将24只成年雄性SD大鼠随机分为对照组和实验组,对照组6只,不进行OSAS造模,正常条件饲养;实验组18只,进行OSAS模型制备,造模后按继续饲养2、4、6周分为2周组、4周组和6周组,每组6只。比较实验组造模前后血氧饱和度,Western Blot检测大鼠海马神经细胞线粒体自噬相关蛋白LC3(LC3Ⅱ/LC3Ⅰ)、p62、PINK1及Parkin的表达;透射电子显微镜观察大鼠海马神经细胞线粒体的变化情况,TUNEL检测法观察大鼠海马CA1区神经细胞的变化。结果 实验组大鼠造模后反应慵懒,警觉性差,进食减少,进食量不规律,偶有呼吸节律不规则等,且血氧饱和度低于造模前,差异有统计学意义(P<0.05);2、4、6周组大鼠海马 CA1区LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达均高于对照组,p62表达低于对照组,且2、4、6周组LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达呈依次升高,p62 表达依次降低,差异均有统计学意义(P<0.05)。2、4、6周组大鼠海马 CA1区线粒体自噬小体及凋亡细胞数均多于对照组,且2、4、6周组呈依次升高,差异均有统计学意义(P<0.05)。结论 OSAS大鼠海马神经细胞发生线粒体自噬可能会加重OSAS大鼠海马神经元的凋亡。
Abstract:
Objective To investigate the effect of mitochondrial autophagy on hippocampal neurons in rats with obstructive sleep apnea syndrome (OSAS).Methods 24 adult male SD rats were randomly divided into a control group and an experimental group, with 6 rats in the control group without OSAS modeling and fed under normal conditions;In the experimental group, 18 animals were prepared for the OSAS model. After the model was established, they were divided into 2 week groups, 4 week groups, and 6 week groups according to 2, 4, and 6 weeks of continuous feeding. The blood oxygen saturation of the experimental group before and after modeling was compared. Western Blot was used to detect the expression of mitochondrial autophagy-related proteins LC3 (LC3Ⅱ/LC3Ⅰ), p62, PINK1 and Parkin in rat hippocampus neurons. Changes, TUNEL detection method to observe the changes of neurons in hippocampal CA1 area of rats.Results The rats in the experimental group had lazy reaction, poor alertness, decreased food intake, irregular food intake, and occasional irregular breathing rhythm, etc., and the blood oxygen saturation was lower than before the model, the difference was statistically significant (P<0.05 ); The protein expressions of LC3 (LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin in hippocampal CA1 area of rats in the 2, 4, and 6-week groups were higher than that in the control group, and the expression of p62 was lower than that in the control group, and LC3 in the 2, 4, and 6-week groups LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin protein expression increased sequentially, p62 expression decreased sequentially, the differences were statistically significant (P<0.05). The number of mitochondrial autophagosomes and apoptotic cells in the hippocampal CA1 area of rats in the 2, 4 and 6 week groups were more than those in the control group, and the 2,4, and 6 week groups were sequentially increased,the differences were statistically significant (P<0.05).Conclusion The occurrence of mitochondrial autophagy in hippocampal neurons of OSAS rats may increase the apoptosis of hippocampal neurons in OSAS rats.

参考文献/References:

[1]Lai S,Mordenti M,Mangiulli M,et al.Resistant hypertension and obstructive sleep apnea syndrome in therapy with continuous positive airway pressure:evaluation of blood pressure,cardiovascular risk markers and exercise tolerance[J].Eur Rev Med Pharmacol Sci,2019,23(21):9612-9624.[2]Sener YZ,Oksul M,Akkaya F.Effects of obstructive sleep apnea and atrial fibrillation on blood pressure variability[J].Anatol J Cardiol,2019,22(6):338.[3]Anzell AR,Maizy R,Przyklenk K,et al.Mitochondrial Quality Control and Disease:Insights into Ischemia-Reperfusion Injury[J].Mol Neurobiol,2018,55(3):2547-2564.[4]Qaid E,Zakaria R,Sulaiman SF,et al.Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit-lessons from rat studies[J].Hum Exp Toxicol,2017,6(3):1315-1325.[5]周赵德,容伟,李春艳.阻塞性睡眠呼吸暂停综合征致大鼠认知障碍及其机制研究[J].中华老年心脑血管病杂志,2019,21(9):976-980.[6]Gao X,Wu S,Dong Y,et al.Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats[J].International Journal of Neuroscience,2018,128(9):797-804.[7]Wang B,Xu X,Liang G,et al.Correlative study of the metabolic disorder of hippocampus and cerebral cortex and cognitive impairment in moderate to severe OSAHS patients[J].Lin Chung Er,2015,29(7):607-611.[8]Springer MZ,Macleod KF.In Brief:Mitophagy:mechanisms and role in human disease[J].J Pathol,2016,240(3):253-255.[9]Kirkin V.History of the Selective Autophagy Research:How Did It Begin and Where Does It Stand Today[J].J Mol Biol,2020,432(1):3-27.[10]Wei L,Wang J,Chen A,et al.Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells[J].Int J Nanomedicine,2017,12(3):1891-1903.[11]Evans CS,Holzbaur ELF.Quality Control in Neurons:Mitophagy and Other Selective Autophagy Mechanisms[J].J Mol Biol,2020,432(1):240-260.[12]Lemasters JJ.Selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J].Rejuvenation Res,2005,8(1):3-5.[13]Liochev SI.Reactive oxygen species and the free radical theory of aging[J].Free Radic Biol Med,2013,60(10):1-4.[14]Misgeld T,Schwarz TL.Mitostasis in Neurons:Maintaining Mitochondria in an Extended Cellular Architecture[J].Neuron,2017,96(3):651-666.[15]Bellou V,Belbasis L,Tzoulaki I,et al.Environmental risk factors and Parkinson’s disease:An umbrella review of meta-analyses[J].Parkinsonism Relat Disord,2016,23(4):1-9.[16]Bowling JL,Skolfield MC,Riley WA,et al.Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway[J].BMC Mol Cell Biol,2019,20(1):33.[17]Bayne AN,Trempe JF.Mechanisms of PINK1,ubiquitin and Parkin interactions in mitochondrial quality control and beyond[J].Cell Mol Life Sci,2019,76(23):4589-4611.[18]Wang R,Wang G.Autophagy in Mitochondrial Quality Control[J].Adv Exp Med Biol,2019,12(6):421-434.

更新日期/Last Update: 1900-01-01