[1]郭 青,何前松,胡斐然,等.大黄酚通过TLR4/NF-kB信号通路途径调控小胶质细胞炎性反应[J].医学信息,2020,33(19):51.[doi:10.3969/j.issn.1006-1959.2020.19.016]
 GUO Qing,HE Qian-song,HU Fei-ran,et al.Chrysophanol Regulates Microglial Inflammatory Response Through TLR4/NF-kB Signaling Pathway[J].Medical Information,2020,33(19):51.[doi:10.3969/j.issn.1006-1959.2020.19.016]
点击复制

大黄酚通过TLR4/NF-kB信号通路途径调控小胶质细胞炎性反应()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
33卷
期数:
2020年19期
页码:
51
栏目:
论著
出版日期:
2020-10-01

文章信息/Info

Title:
Chrysophanol Regulates Microglial Inflammatory Response Through TLR4/NF-kB Signaling Pathway
文章编号:
1006-1959(2020)19-0051-05
作者:
郭 青何前松胡斐然蔡友德李宇鸿
贵州中医药大学研究生院,贵州 贵阳 550002
Author(s):
GUO QingHE Qian-songHU Fei-ranCAI You-deLI Yu-hong
Graduate School,Guizhou University of Traditional Chinese Medicine,Guiyang 550002,Guizhou,China
关键词:
大黄酚脂多糖小胶质细胞炎性反应
Keywords:
ChrysophanolLipopolysaccharideMicrogliaInflammatory response
分类号:
R285.5
DOI:
10.3969/j.issn.1006-1959.2020.19.016
文献标志码:
A
摘要:
目的 观察大黄酚对脂多糖(LPS)激活诱导的小胶质细胞炎性反应的影响并探讨其作用机制。方法 采用LPS诱导小胶质细胞活化,CCK-8检测不同浓度大黄酚(1、10、50、100 μg/ml)对小胶质细胞细胞活性的影响,将细胞分为空白组、LPS组、LPS+大黄酚低、中、高剂量组(1、10、50 μg/ml),一氧化氮(NO)测试盒检测细胞上清液中NO释放量,ELISA检测IL-1、TNF-a、IL-4和IL-10含量,蛋白免疫印迹法检测小胶质细胞NF-κB及TLR4蛋白表达的情况,免疫荧光法检测NF-κB蛋白在细胞中的位置变化。结果 大黄酚浓度在1~50 μg/ml对小胶质细胞活力影响不显著,此浓度范围内,大黄酚呈剂量依赖性地降低IL-1、TNF-a表达水平,升高IL-4、IL-10的表达水平(P<0.05);此外,大黄酚可抑制LPS诱导的小胶质细胞形态改变。与空白组比较,LPS组TLR4、NF-kB蛋白表达水平升高意义(P<0.05);与LPS组相比较,除LPS+大黄酚低剂量组胞核中NF-κB蛋白表达水平降低不显著外,其余各组上述蛋白水平表达均改善(P<0.05)。免疫荧光染色实验结果显示,与空白组相比较,LPS组细胞核中NF-κB蛋白表达上升,胞浆中NF-κB表达下降。结论 大黄酚可以抑制LPS诱导的小胶质细胞炎性反应,促进小胶质细胞M1型向M2型的转化,其机制可能与下调TLR4/NF-κB信号通路有关。
Abstract:
Objective To observe the effect of chrysophanol on the inflammatory response of microglia induced by lipopolysaccharide (LPS) activation and explore its mechanism.Methods LPS was used to induce the activation of microglia. CCK-8 was used to detect the effects of different concentrations of chrysophanol (1, 10, 50, and 100 μg/ml) on the activity of microglia. The cells were divided into blank group, LPS group, LPS+chrysophanol low, medium and high dose groups (1, 10, 50 μg/ml), nitric oxide (NO) test kit detects the release of NO in the cell supernatant, and ELISA detects IL-1, TNF-a, IL -4 and IL-10 content, Western blotting was used to detect the expression of NF-κB and TLR4 protein in microglia, and immunofluorescence was used to detect the location of NF-κB protein in the cell.Results The concentration of chrysophanol in the range of 1-50 μg/ml has no significant effect on the viability of microglia. In this concentration range, chrysophanol dose-dependently reduces the expression level of IL-1 and TNF-a, and increases IL-4 and IL -10 expression level (P<0.05). In addition, chrysophanol can inhibit the morphological changes of microglia induced by LPS. Compared with the blank group, the expression levels of TLR4 and NF-kB protein in the LPS group increased(P<0.05); compared with the LPS group, except for the low-dose LPS+chrysophanol group, the expression of NF-κB protein in the nucleus except for the insignificant decrease in the level, the expression of the above-mentioned protein levels in the other groups was improved (P<0.05). The results of immunofluorescence staining experiments showed that compared with the blank group, the expression of NF-κB protein in the nucleus of the LPS group increased, and the expression of NF-κB in the cytoplasm decreased.Conclusion Chrysophanol can inhibit LPS-induced inflammatory response in microglia and promote the transformation of microglia from M1 type to M2 type might be related to the down-regulation of the TLR4/NF-κB signaling pathway.

参考文献/References:

[1]Randolph SA.Ischemic Stroke[J].Workplace Health Saf,2016,64(9):444. [2]Jin WN,Shi SX,Li Z,et al.Depletion of microglia exacerbates postischemic inflammation and brain injury[J].J Cereb Blood Flow Metab,2017,37(6):2224-2236. [3]Surinkaew P,Sawaddiruk P,Apaijai N,et al.Role of microglia under cardiac and cerebral ischemia/reperfusion(I/R)injury[J].Metabolic Brain Disease.2018,33(4):1019-1030. [4]Qin C,Zhou LQ,Ma XT,et al.Dual Functions of Microglia in Ischemic Stroke[J].Neurosci Bull,2019,35(5):921-933. [5]Anttila JE,Whitaker KW,Wires ES,et al.Role of microglia in ischemic focal stroke and recovery:focus on Toll-like receptors[J].Prog Neuropsychopharmacol Biol Psychiatry,2017,79(Pt A):3-14. [6]Leitner GR,Wenzel TJ,Marshall N,et al.Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders[J].Expert Opin Ther Targets,2019,23(10):865-882. [7]Li RR,Liu XF,Feng SX,et al.Pharmacodynamics of Five Anthraquinones(Aloe-emodin,Emodin,Rhein,Chysophanol,and Physcion)and Reciprocal Pharmacokinetic Interaction in Rats with Cerebral Ischemia[J].Molecules,2019,24(10):1898. [8]Xie L,Tang H,Song J,et al.Chrysophanol:a review of its pharmacology,toxicity and pharmacokinetics[J].J Pharm Pharmacol,2019,71(10):1475-1487. [9]Yuan Y,Fang M,Wu CY,et al.Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia[J].Neuromolecular Med,2016,18(3):264-273. [10]Hickman S,Izzy S,Sen P,et al.Microglia in neurodegeneration[J].Nat Neurosci,2018,21(10):1359-1369. [11]Zhao SC,Ma LS,Chu ZH,et al.Regulation of microglial activation in stroke[J].Acta Pharmacol Sin,2017,38(4):445-458. [12]Kaur C,Rathnasamy G,Ling EA.Biology of Microglia in the Developing Brain[J].J Neuropathol Exp Neurol,2017,76(9):736-753. [13]Tang Y,Le W.Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J].Mol Neurobiol,2016,53(2):1181-1194. [14]Bruno K,Woller SA,Miller YI,et al.Targeting toll-like receptor-4(TLR4)-an emerging therapeutic target for persistent pain states[J].Pain,2018,159(10):1908-1915. [15]Huang Z,Zhou T,Sun X,et al.Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation[J].Cell Death Differ,2018,25(1):180-189.

相似文献/References:

[1]白 冰,郭亚春,石凯行.黄芩苷镁对脂多糖联合D-氨基半乳糖致急性肝损伤大鼠炎症因子的影响[J].医学信息,2022,35(16):70.[doi:10.3969/j.issn.1006-1959.2022.16.015]
 BAI Bing,GUO Ya-chun,SHI Kai-hang.Effect of Baicalin Magnesium on Inflammatory Factors in Rats with Acute Liver Injury Induced by Lipopolysaccharide Combined with D-galactosamine[J].Medical Information,2022,35(19):70.[doi:10.3969/j.issn.1006-1959.2022.16.015]
[2]何 跃,黄 丽,姚天玉,等.A20对脂多糖诱导人树突状细胞成熟度及功能的影响[J].医学信息,2023,36(01):86.[doi:10.3969/j.issn.1006-1959.2023.01.016]
 HE Yue,HUANG Li,YAO Tian-yu,et al.Effect of A20 on the Maturity and Function of Human Dendritic Cells Induced by Lipopolysaccharide[J].Medical Information,2023,36(19):86.[doi:10.3969/j.issn.1006-1959.2023.01.016]
[3]殷佳辉,王 琪,孙宇辰,等.胎牛肺间充质干细胞对脂多糖介导小鼠急性肺损伤治疗的研究[J].医学信息,2021,34(10):78.[doi:10.3969/j.issn.1006-1959.2021.10.022]
 YIN Jia-hui,WANG Qi,SUN Yu-chen,et al.Research on Fetal Bovine Lung Mesenchymal Stem Cells on Lipopolysaccharide-induced Acute Lung Injury in Mice[J].Medical Information,2021,34(19):78.[doi:10.3969/j.issn.1006-1959.2021.10.022]
[4]陈鹤翔,何 旋,吴晓静,等.脂多糖诱导大鼠脓毒症相关心肺损伤模型的构建及评价[J].医学信息,2023,36(19):75.[doi:10.3969/j.issn.1006-1959.2023.19.015]
 CHEN He-xiang,HE Xuan,WU Xiao-jing,et al.Construction and Evaluation of Lipopolysaccharide-induced Sepsis-related Myocardial Injury and Lung Injury Model in Rats[J].Medical Information,2023,36(19):75.[doi:10.3969/j.issn.1006-1959.2023.19.015]

更新日期/Last Update: 1900-01-01