[1]吴 迪,柴仲秋,周 冰.靶向癌蛋白调控Warburg效应的中医药研究进展[J].医学信息,2022,35(13):42-45.[doi:10.3969/j.issn.1006-1959.2022.13.008]
 WU Di,CHAI Zhong-qiu,ZHOU Bing.Research Progress of Traditional Chinese Medicine Targeting Oncoproteins to Regulate Warburg Effect[J].Medical Information,2022,35(13):42-45.[doi:10.3969/j.issn.1006-1959.2022.13.008]
点击复制

靶向癌蛋白调控Warburg效应的中医药研究进展()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年13期
页码:
42-45
栏目:
综述
出版日期:
2022-07-01

文章信息/Info

Title:
Research Progress of Traditional Chinese Medicine Targeting Oncoproteins to Regulate Warburg Effect
文章编号:
1006-1959(2022)13-0042-04
作者:
吴 迪柴仲秋周 冰
(天津市滨海新区中医医院肛肠科,天津 300451)
Author(s):
WU DiCHAI Zhong-qiuZHOU Bing
(Department of Anorectal,Binhai New Area Hospital of Traditional Chinese Medicine Tianjin,Tianjin 300451,China)
关键词:
糖酵解warburg效应恶病质中药
Keywords:
GlycolysisWarburg effectCachexiaTraditional Chinese medicine
分类号:
R730.5
DOI:
10.3969/j.issn.1006-1959.2022.13.008
文献标志码:
A
摘要:
多数实体肿瘤很大程度上依赖有氧糖酵解来产生能量,从而适应其异质微环境。改变的能量代谢不仅为癌细胞提供ATP,还生成必需的代谢中间体,这些中间体在大分子的生物合成中起关键作用,以支持癌细胞增殖、侵袭和化学抗性。癌细胞代谢重编程受到几种癌蛋白(如HIF-1、ROS、Ras、Src、mTOR和Myc)的调控,对有氧糖酵解调控机制的深入理解有助于开发靶向糖酵解的治疗药物。中医药注重整体观念,中药多元化的成分使其具有多途径、多效应的特点,在治疗复杂而多因素的肿瘤综合征方面具有独特优势。本文现综述有关糖代谢中涉及的癌蛋白及中医药研究,旨在为抗糖酵解治疗提供新的靶点和突破口。
Abstract:
Most solid tumors rely heavily on aerobic glycolysis to generate energy to adapt to their heterogeneous microenvironment. Changing energy metabolism not only provides ATP for cancer cells, but also generates essential metabolic intermediates, which play a key role in the biosynthesis of macromolecules to support cancer cell proliferation, invasion and chemical resistance. The metabolic reprogramming of cancer cells is regulated by several cancer proteins (such as HIF-1, ROS, Ras, Src, mTOR and Myc). The in-depth understanding of the regulation mechanism of aerobic glycolysis is helpful to develop therapeutic drugs targeting glycolysis. Traditional Chinese medicine pays attention to the overall concept. The diversified components of traditional Chinese medicine make it have the characteristics of multi-channel and multi-effect, and have unique advantages in the treatment of complex and multi-factor tumor syndrome. This paper reviews the research on cancer proteins and traditional Chinese medicine related to glucose metabolism, aiming to provide new targets and breakthroughs for anti-diabetic treatment.

参考文献/References:

[1]Chen F,Chen J,Yang L,et al.Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells[J].Nat Cell Biol,2019,21(4):498-510.[2]Liberti MV,Locasale JW.The Warburg Effect: How Does it Benefit Cancer Cells?[J].Trends Biochem Sci,2016,41(3):211-218.[3]Yeung C,Gibson AE,Issaq SH,et al.Targeting Glycolysis through Inhibition of Lactate Dehydrogenase Impairs Tumor Growth in Preclinical Models of Ewing Sarcoma[J].Cancer Res,2019,79(19):5060-5073.[4]Epstein T,Gatenby RA,Brown JS.The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand[J].PLoS One,2017,12(9):e0185085.[5]Payen VL,Mina E,Van Hée VF,et al.Monocarboxylate transporters in cancer[J].Mol Metab,2019,33(3):48-66.[6]Kim J,Barsoum IB,Loh H,et al.Inhibition of hypoxia-inducible factor 1α accumulation by glyceryl trinitrate and cyclic guanosine monophosphate[J].Biosci Rep,2020,40(1):BSR20192345.[7]Lee G,Won HS,Lee YM,et al.Oxidative Dimerization of PHD2 is Responsible for its Inactivation and Contributes to Metabolic Reprogramming via HIF-1α Activation[J].Sci Rep,2016,6:18928.[8]Chang YC,Chan YC,Chang WM,et al.Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression[J].Cancer Lett,2017,403:28-36.[9]Wei J,Wu J,Xu W,et al.Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway[J].Cell Death Dis,2018,9(6):599.[10]Zhu W,Li Y,Zhao D,et al.Dihydroartemisinin suppresses glycolysis of LNCaP cells by inhibiting PI3K/AKT pathway and downregulating HIF-1α expression[J].Life Sci,2019,233:116730.[11]Liu Z,Zhu W,Kong X,et al.Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer[J].Oncol Rep,2019,42(5):1893-1903.[12]Liu W,Pan HF,Yang LJ,et al.Meyer (Rg3) Ameliorates Gastric Precancerous Lesions in Atp4a-/- Mice via Inhibition of Glycolysis through PI3K/AKT/miRNA-21 Pathway[J].Evid Based Complement Alternat Med,2020,2020:2672648.[13]Jin J,Qiu S,Wang P,et al.Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming[J].J Exp Clin Cancer Res,2019,38(1):377.[14]Tao H,Ding X,Wu J,et al.β-Asarone Increases Chemosensitivity by Inhibiting Tumor Glycolysis in Gastric Cancer[J].Evid Based Complement Alternat Med,2020,2020:6981520.[15]Vallée A,Lecarpentier Y.Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis[J].Front Immunol,2018,9:745.[16]Balamurugan K.HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J].Int J Cancer,2016,138(5):1058-1066.[17]Remels AH,Gosker HR,Verhees KJ,et al.TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α[J].Endocrinology,2015,156(5):1770-1781.[18]Wang W,Wu Y,Yang K,et al.Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities[J].Eur J Med Chem,2019,173:282-293.[19]Zhang T,Zhu X,Wu H,et al.Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose[J].J Cell Mol Med,2019,23(5):3711-3723.[20]Jiao L,Wang S,Zheng Y,et al.Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway[J].Biochem Pharmacol,2019,161:149-162.[21]Tanner LB,Goglia AG,Wei MH,et al.Four Key Steps Control Glycolytic Flux in Mammalian Cells[J].Cell Syst,2018,7(1):49-62.e8.[22]官紫祎,陈兰英,罗颖颖,等.基于糖酵解机制的白头翁皂苷多成分协同抑制人肺癌NCI-H460细胞增殖作用研究[J].中草药,2019,50(21):5289-5297.[23]Zhou Y,Cheng C,Baranenko D,et al.Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics[J].Int J Mol Sci,2018,19(1):159.[24]Liu B,Huang ZB,Chen X,et al.Mammalian Target of Rapamycin 2 (MTOR2) and C-MYC Modulate Glucosamine-6-Phosphate Synthesis in Glioblastoma (GBM) Cells Through Glutamine: Fructose-6-Phosphate Aminotransferase 1 (GFAT1)[J].Cell Mol Neurobiol,2019,39(3):415-434.[25]Huang J,Gao W,Liu H,et al.Up-regulated ANP32E promotes the thyroid carcinoma cell proliferation and migration via activating AKT/mTOR/HK2-mediated glycolysis[J].Gene,2020,750:144681.[26]Wu H,Pan L,Gao C,et al.Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway[J].Molecules,2019,24(10):1993.[27]Deng X,Zhao J,Qu L,et al.Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer[J].Biochem Pharmacol,2020,178:114038.[28]Shi D,Zhao D,Niu P,et al.Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells[J].BMC Complement Altern Med,2018,18(1):317.[29]Zarrabi AJ,Kao D,Nguyen DT,et al.Hypoxia-induced suppression of c-Myc by HIF-2α in human pulmonary endothelial cells attenuates TFAM expression[J].Cell Signal,2017,38:230-237.[30]Li Y,Sun XX,Qian DZ,et al.Molecular Crosstalk Between MYC and HIF in Cancer[J].Front Cell Dev Biol,2020,8:590576.[31]Yuan J,Peng G,Xiao G,et al.Xanthohumol suppresses glioblastoma via modulation of Hexokinase 2 -mediated glycolysis[J].J Cancer,2020,11(14):4047-4058.[32]Li M,Gao F,Zhao Q,et al.Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis[J].Cell Death Dis,2020,11(5):381.[33]Xi Y,Zhang Y,Pan J,et al.Triptolide dysregulates glucose uptake via inhibition of IKKβ-NF-κB pathway by p53 activation in cardiomyocytes[J].Toxicol Lett,2020,318:1-11.[34]Zhang C,Cai T,Zeng X,et al.Astragaloside IV reverses MNNG-induced precancerous lesions of gastric carcinoma in rats: Regulation on glycolysis through miRNA-34a/LDHA pathway[J].Phytother Res,2018,32(7):1364-1372.

相似文献/References:

[1]丁 丹,赵荣昌,丁 燕,等.利用糖酵解相关LncRNA构建肺腺癌患者的预后模型[J].医学信息,2024,37(05):1.[doi:10.3969/j.issn.1006-1959.2024.05.001]
 DING Dan,ZHAO Rong-chang,DING Yan,et al.Construct a Prognostic Model for Patients with Lung Adenocarcinoma by Using Glycolysis-related LncRNA[J].Medical Information,2024,37(13):1.[doi:10.3969/j.issn.1006-1959.2024.05.001]

更新日期/Last Update: 1900-01-01