[1]胡嘉莉,华 琳.miRNA-mRNA双重表达谱在前列腺癌分子调控机制中的作用[J].医学信息,2022,35(16):18-23.[doi:10.3969/j.issn.1006-1959.2022.16.004]
 HU Jia-li,HUA Lin.Role of miRNA-mRNA Dual Expression Profile in Molecular Regulation of Prostate Cancer[J].Journal of Medical Information,2022,35(16):18-23.[doi:10.3969/j.issn.1006-1959.2022.16.004]
点击复制

miRNA-mRNA双重表达谱在前列腺癌分子调控机制中的作用()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年16期
页码:
18-23
栏目:
生物信息学
出版日期:
2022-08-15

文章信息/Info

Title:
Role of miRNA-mRNA Dual Expression Profile in Molecular Regulation of Prostate Cancer
文章编号:
1006-1959(2022)16-0018-06
作者:
胡嘉莉华 琳
(首都医科大学生物医学工程学院,北京 100069)
Author(s):
HU Jia-liHUA Lin
(School of Biomedical Engineering,Capital Medical University,Beijing 100069,China)
关键词:
前列腺癌miRNAmRNA分子调控机制
Keywords:
Prostate cancermiRNAmRNAMolecular regulation mechanism
分类号:
R737.25
DOI:
10.3969/j.issn.1006-1959.2022.16.004
文献标志码:
A
摘要:
目的 对前列腺癌的mRNA和miRNA的双重表达谱进行生物信息学分析,探讨前列腺癌的分子调控机制并识别与前列腺癌相关的生物标记。方法 从GEO数据库中获取前列腺癌的mRNA和miRNA双重表达谱数据,首先采用差异表达分析提取与前列腺癌相关的上调和下调的miRNA和mRNA,然后通过Pearson相关分析确定最显著上调的和下调的miRNA与其靶向基因的反向调控关系,通过广义典型相关分析(GCCA)探讨miRNA和mRNA的分子调控机制并构建调控网络,识别与前列腺癌相关的生物标记。结果 共发现117个差异表达的miRNA和9054个差异表达的mRNA,其中有15个miRNA和35个mRNA表达下调,20个miRNA和36个mRNA表达上调;Pearson相关性分析显示,miR-137反向调控HOXC4、NPIPL3和WSB1,miR-367反向调控MEFA及TNFAIP6;GCCA分析显示,MED13L的第一主成分权系数在前列腺癌患者中最高,第一主成分权系数较高的TRRAP被证实与前列腺癌高度;miR-29b、miR-488*与前列腺癌高度关联且在miRNA-mRNA的分子调控网络中调控的基因数最多。结论 miR-29b和miR-29b-1*在前列腺癌相关的分子调控机制中有着重要的作用,可以作为潜在的阻止前列腺癌发生和发展的治疗靶向。
Abstract:
Objective To study the dual expression profile of mRNA and miRNA in prostate cancer by bioinformatics analyze, to explore the molecular regulation mechanism of prostate cancer and to identify biomarkers related to prostate cancer.Methods The mRNA and miRNA dual expression profile data of prostate cancer were obtained from GEO database. Firstly, the up-regulated and down-regulated miRNAs and mRNAs related to prostate cancer were extracted by differential expression analysis. Then, the reverse regulation relationship between the most significantly up-regulated and down-regulated miRNAs and their target genes was determined by Pearson correlation analysis. The molecular regulation mechanism of miRNA and mRNA was discussed by generalized canonical correlation analysis (GCCA) and the regulatory network was constructed to identify biomarkers related to prostate cancer.Results A total of 117 differentially expressed miRNAs and 9054 differentially expressed mRNAs were found, of which 15 miRNAs and 35 mRNAs were down-regulated and 20 miRNAs and 36 mRNAs were up-regulated. Pearson correlation analysis showed that miR-137 reversely regulated HOXC4, NPIPL3 and WSB1, and miR-367 reversely regulated MEFA and TNFAIP6; GCCA analysis showed that the first principal component weight coefficient of MED13L was the highest in prostate cancer patients, and TRRAP with higher first principal component weight coefficient was confirmed to be highly associated with prostate cancer. MiR-29b and miR-488* were highly associated with prostate cancer and regulated the most genes in the molecular regulatory network of miRNA-mRNA.Conclusion miR-29 b and miR-29 b-1* play an important role in the molecular regulation mechanism of prostate cancer, and can be used as potential therapeutic targets to prevent the occurrence and development of prostate cancer.

参考文献/References:

[1]罗于杰,蓝建华,黄国华.miR-29a过表达对人前列腺癌细胞凋亡的调控机制研究[J].中国煤炭工业医学杂志,2021,24(1):15-20.[2]Wenter V,Herlemann A,Fendler WP,et al.Radium-223 for primary bone metastases in patients with hormone-sensitive prostate cancer after radical prostatectomy[J].Oncotarget,2017,8(27):2021-2026.[3]Khan S,Ayub H,Khan T,et al.MicroRNA biogenesis,gene silencing mechanisms and role in breast, ovarian and prostate cancer[J].Biochimie,2019,167:12-24.[4]McDonald AC,Vira M,Walter V,et al.Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy[J].Prostate,2019,79(9):961-968.[5]K?覿mpj?覿rvi K,Kim NH,Keskitalo S,et al.Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms[J].The Prostate,2016,76(1):22-31.[6]Chen E,Cario CL,Leong L,et al.Cell-Free DNA Detection of Tumor Mutations in Heterogeneous, Localized Prostate Cancer Via Targeted, Multiregion Sequencing[J].JCO precision oncology,2021,5:PO.20.00428.[7]Wang Y,Wang K,Chen Y,et al.Mutational landscape of penile squamous cell carcinoma in a Chinese population[J].International Journal of Cancer,2019,145(5):1280-1289.[8]Kang KT,Kwon YW,Kim DK,et al.TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells[J].BMB Reports,2018,51(10):514-519.[9]Takahide H,Hiroshi M,Hirofumi N,et al.Germline Variants of Prostate Cancer in Japanese Families[J].PLoS One,2017,11(10):e0164233.[10]Zainab AS,Siu SS,Choijamts M,et al.Regulatory Mechanism of MicroRNA Expression in Cancer[J].International Journal of Molecular Sciences,2020,21(5):1273.[11]Sharma N,Baruah MM.The microRNA signatures: aberrantly expressed miRNAs in prostate cancer[J].Clin Transl Oncol,2019,21(2):126-144.[12]Zhu C,Hou X,Zhu J,et al.Expression of miR-30c and miR-29b in prostate cancer and its diagnostic significance[J].Oncology Letters,2018,16(3):3140-3144.[13]Ivanovic RF,Viana NI,Morais DR,et al.miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression[J].Cancer Cell International,2018,18(1):18.[14]Sur S,Steele R,Shi X,et al.miRNA-29b Inhibits Prostate Tumor Growth and Induces Apoptosis by Increasing Bim Expression[J].Cells,2019,8(11):455.[15]Vladimir AV,Rafael P,Beatriz AW,et al.microRNA Expression Profiling in Young Prostate Cancer Patients[J].Journal of Cancer,2020,11(14):4106-4114[16]Kato M,Kurozumi A,Goto Y,et al.Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer[J].Journal of Human Genetics,2017,62(1):123-132.[17]Masuda T,Shinden Y,Noda M,et al.Circulating Pre-microRNA-488 in Peripheral Blood Is a Potential Biomarker for Predicting Recurrence in Breast Cancer[J].Anticancer Res,2018,38(8):4515-4523.[18]Guo JY,Wang XQ,Sun LF.MicroRNA-488 inhibits ovarian cancer cell metastasis through regulating CCNG1 and p53 expression[J].Eur Rev Med Pharmacol Sci,2020,24(6):2902-2910.[19]Deng X,Li D,Ke X,et al.Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3[J].J Clin Lab Anal,2021,35(1):e23578.[20]Wang J,Li X,Xiao Z,et al.MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3[J].FEBS Open Bio,2019,9(10):1798-1807.

相似文献/References:

[1]廖 祺,黄 一,徐 雪.前列腺癌骨转移的疼痛管理[J].医学信息,2018,31(06):51.[doi:10.3969/j.issn.1006-1959.2018.06.017]
 LIAO Qi,HUANG Yi,XU Xue.Pain Management of Bone Metastasis in Prostate Cancer[J].Journal of Medical Information,2018,31(16):51.[doi:10.3969/j.issn.1006-1959.2018.06.017]
[2]袁长翮.超声引导下经直肠前列腺穿刺诊断前列腺癌的价值研究[J].医学信息,2018,31(04):156.[doi:10.3969/j.issn.1006-1959.2018.04.058]
 YUAN Chang-he.The Value of Ultrasound Guided Transrectal Prostate Puncture in the Diagnosis of Prostate Cancer[J].Journal of Medical Information,2018,31(16):156.[doi:10.3969/j.issn.1006-1959.2018.04.058]
[3]胡春燕,吴天天,王 殊,等.前列腺癌患者自我感受负担及其影响因素研究[J].医学信息,2018,31(13):173.[doi:10.3969/j.issn.1006-1959.2018.13.054]
 HU Chun-yan,WU Tian-tian,WANG Shu,et al.Study on Self-perceived Burden and its Influencing Factors in Patients with Prostate Cancer[J].Journal of Medical Information,2018,31(16):173.[doi:10.3969/j.issn.1006-1959.2018.13.054]
[4]曹志彬,王元天,杨伟忠,等.前列腺健康指数在前列腺癌早期诊断中的价值[J].医学信息,2018,31(23):29.[doi:10.3969/j.issn.1006-1959.2018.23.009]
 CAO Zhi-bin,WANG Yuan-tian,YANG Wei-zhong,et al.The Value of Prostate Health Index in Early Diagnosis of Prostate Cancer[J].Journal of Medical Information,2018,31(16):29.[doi:10.3969/j.issn.1006-1959.2018.23.009]
[5]赵瑶瑶,高 川,胡佳杰.循环miRNA监测肝细癌的研究[J].医学信息,2019,32(08):48.[doi:10.3969/j.issn.1006-1959.2019.08.016]
 ZHAO Yao-yao,GAO Chuan,HU Jia-jie.Research on the Study of Circulating miRNA for Monitoring Hepatocellular Carcinoma[J].Journal of Medical Information,2019,32(16):48.[doi:10.3969/j.issn.1006-1959.2019.08.016]
[6]张 莹,谢 静.前列腺癌预后标志的研究[J].医学信息,2019,32(09):7.[doi:10.3969/j.issn.1006-1959.2019.09.003]
 ZHANG Ying,XIE Jing.Prognostic Markers of Prostate Cancer[J].Journal of Medical Information,2019,32(16):7.[doi:10.3969/j.issn.1006-1959.2019.09.003]
[7]袁也晴,张学齐,汪青蓉,等.KIF14在前列腺癌细胞中的表达及作用[J].医学信息,2019,32(09):68.[doi:10.3969/j.issn.1006-1959.2019.09.022]
 YUAN Ye-qing,ZHANG Xue-qi,WANG Qing-rong,et al.Expression and Role of KIF14 in Prostate Cancer Cells[J].Journal of Medical Information,2019,32(16):68.[doi:10.3969/j.issn.1006-1959.2019.09.022]
[8]王 乾,孙 宾,李殷南,等.尿液中肌氨酸、PCA3mRNA在前列腺癌 早期诊断中的应用[J].医学信息,2019,32(14):175.[doi:10.3969/j.issn.1006-1959.2019.14.059]
 WANG Qian,SUN Bin,LI Yin-nan,et al.Application of Urinary Sarcosine and PCA3mRNA in Early Diagnosis of Prostate Cancer[J].Journal of Medical Information,2019,32(16):175.[doi:10.3969/j.issn.1006-1959.2019.14.059]
[9]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
 LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(16):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[10]魏绮琪,张 颖.miR-200c与卵巢癌关系的研究[J].医学信息,2020,33(03):53.[doi:10.3969/j.issn.1006-1959.2020.03.016]
 WEI Qi-qi,ZHANG Ying.Study on the Relationship Between miR-200c and Ovarian Cancer[J].Journal of Medical Information,2020,33(16):53.[doi:10.3969/j.issn.1006-1959.2020.03.016]
[11]王文光,王玉杰,刘 强,等.不同民族前列腺癌患者癌组织miRNA表达差异研究[J].医学信息,2023,36(01):7.[doi:10.3969/j.issn.1006-1959.2023.01.002]
 WANG Wen-guang,WANG Yu-jie,LIU Qiang,et al.Differential Expression of miRNA in Cancer Tissues of Patients with Prostate Cancer in Different Nationalities[J].Journal of Medical Information,2023,36(16):7.[doi:10.3969/j.issn.1006-1959.2023.01.002]

更新日期/Last Update: 1900-01-01