[1]俞 宁,陈 健,曹烨民,等.基于网络药理学和分子对接探讨白鹤方治疗血栓性浅静脉炎的作用机制[J].医学信息,2022,35(23):11-17.[doi:10.3969/j.issn.1006-1959.2022.23.003]
 YU Ning,CHEN Jian,CAO Ye-min,et al.Study on Mechanism of Baihe Formula in Treating Superficial Thrombophlebitis Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2022,35(23):11-17.[doi:10.3969/j.issn.1006-1959.2022.23.003]
点击复制

基于网络药理学和分子对接探讨白鹤方治疗血栓性浅静脉炎的作用机制()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年23期
页码:
11-17
栏目:
中医药信息学
出版日期:
2022-12-01

文章信息/Info

Title:
Study on Mechanism of Baihe Formula in Treating Superficial Thrombophlebitis Based on Network Pharmacology and Molecular Docking
文章编号:
1006-1959(2022)23-0011-07
作者:
俞 宁陈 健曹烨民
(1.上海中医药大学,上海 201203;2.上海中医药大学附属中西医结合医院脉管病研究所,上海 200082;3.上海中医药大学附属中西医结合医院脉管病科,上海 200082)
Author(s):
YU NingCHEN JianCAO Ye-minet al.
(1.Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;2.Institute of Vascular Disease,Shanghai TCM-Integrated Hospital,Shanghai University of Traditional Chinese Medicine,Shanghai 200082,China;3.Department of Vascular Diseases,Shanghai TCM-Integrated Hospital,Shanghai University of Traditional Chinese Medicine,Shanghai 200082,China)
关键词:
血栓性浅静脉炎白鹤方网络药理学分子对接中药复方
Keywords:
Superficial thrombophlebitisBaihe formulaNetwork pharmacologyMolecular dockingTraditional Chinese medicine compound
分类号:
R285
DOI:
10.3969/j.issn.1006-1959.2022.23.003
文献标志码:
A
摘要:
目的 探讨白鹤方治疗血栓性浅静脉炎的机制。方法 从TCMSP、ETCM等数据库获取白鹤方的药物成分,SWISSADME筛选胃肠道吸收和药物代谢动力学获得有效成分;使用GeneCard、DisGeNET等数据库进行筛选疾病靶点。在Cytoscape 3.8.2中构建“复方-草药-成分-靶点-疾病”网络图,并对有效靶点进行GO和KEGG通路富集分析。通过分子对接对核心靶标进行初步验证。结果 共筛选出306个活性成分,其中槲皮素、木犀草素、山奈酚、咖啡酸、反式白藜芦醇是关联度最高的活性成分;MMP2、MMP9和ALOX5是关联度最多的靶点;GO和KEGG分析显示,TNF信号通路是最重要的途径,共涉及6个调控基因(PIK3CA、MMP3、AKT1、PIK3R1、TNF、MMP9);分子对接结果显示,山奈酚、槲皮素、芹黄素、硬脂酸与关键靶蛋白MPO、MMP3、F2、MMP9等具有较好的结合力。结论 白鹤方可能通过抗炎免疫、抑制新生血管来发挥治疗血栓性前静脉炎的作用。
Abstract:
Objective To explore the mechanism of Baihe formula in treating superficial thrombophlebitis.Methods The drug components of Baihe formula were obtained from TCMSP, ETCM and other databases. SWISSADME was used to screen gastrointestinal absorption and pharmacokinetics to obtain effective components. Screening for disease targets using databases such as GeneCard and DisGeNET. A "compound-herb-component-target-disease" network diagram was constructed in Cytoscape 3.8.2, and GO and KEGG pathway enrichment analysis was performed on the effective targets. The core target was preliminarily verified by molecular docking.Results A total of 306 active components were screened out, among which quercetin, luteolin, kaempferol, caffeic acid and trans-resveratrol were the active components with the highest correlation. MMP2, MMP9 and ALOX5 were the most correlated targets. GO and KEGG analysis showed that TNF signaling pathway was the most important pathway, involving 6 regulatory genes (PIK3CA, MMP3, AKT1, PIK3R1, TNF, MMP9); molecular docking results showed that kaempferol, quercetin, apigenin and stearic acid had good binding force with key target proteins MPO, MMP3, F2 and MMP9.Conclusion Baihe formula may play a role treatment of superficial thrombophlebitis through anti-inflammatory immunity and inhibiting angiogenesis.

参考文献/References:

[1]de Almeida MJ,Guillaumon AT,Miquelin D,et al.Guidelines for superficial venous thrombosis[J].J Vasc Bras,2019,18:e20180105.[2]Luis Rodríguez-Peralto J,Carrillo R,Rosales B,et al.Superficial thrombophlebitis[J].Semin Cutan Med Surg,2007,26(2):71-76.[3]Sándor T.Superficial venous thrombosis. A state of art[J].Orv Hetil,2017,158(4):129-138.[4]Di Nisio M,Wichers IM,Middeldorp S.Treatment for superficial thrombophlebitis of the leg[J].Cochrane Database Syst Rev,2018,2(2):CD004982.[5]于健宁,马纪林,陶筱娟.白鹤冲剂对TNF-α刺激的血管内皮细胞与嗜中性粒细胞黏附的影响[J].浙江中西医结合杂志,2011,21(12):840-843.[6]Wei M,Li H,Li Q,et al.Based on Network Pharmacology to Explore the Molecular Targets and Mechanisms of Gegen Qinlian Decoction for the Treatment of Ulcerative Colitis[J].Biomed Res Int,2020,2020:5217405.[7]Zhang YF,Huang Y,Ni YH,et al.Systematic elucidation of the mechanism of geraniol via network pharmacology[J].Drug Des Devel Ther,2019,13:1069-1075.[8]Xu HY,Zhang YQ,Liu ZM,et al.ETCM:an encyclopaedia of traditional Chinese medicine[J].Nucleic Acids Res,2019,47(D1):D976-D982.[9]Wu Y,Zhang F,Yang K,et al.SymMap:an integrative database of traditional Chinese medicine enhanced by symptom mapping[J].Nucleic Acids Res,2019,47(D1):D1110-D1117.[10]Li D,Fan H,Dong J,et al.Based on BATMAN-TCM to Explore the Molecular Mechanism of Xihuang Pill Regulating Immune Function to Treat Breast Precancerous Lesions[J].Breast Cancer (Dove Med Press),2021,13:725-742.[11]He S,Wang T,Shi C,et al.Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia[J].J Ethnopharmacol,2022,282:114615.[12]Sympli HD.Estimation of drug-likeness properties of GC-MS separated bioactive compounds in rare medicinal Pleione maculata using molecular docking technique and SwissADME in silico tools[J].Netw Model Anal Health Inform Bioinform,2021,10(1):14.[13]Daina A,Michielin O,Zoete V.SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J].Nucleic Acids Res,2019,47(W1):W357-W364.[14]Bai LL,Chen H,Zhou P,et al.Identification of Tumor Necrosis Factor-Alpha (TNF-α) Inhibitor in Rheumatoid Arthritis Using Network Pharmacology and Molecular Docking[J].Front Pharmacol,2021,12:690118.[15]Pi?觡ero J,Saüch J,Sanz F,et al.The DisGeNET cytoscape app:Exploring and visualizing disease genomics data[J].Comput Struct Biotechnol J,2021,19:2960-2967.[16]Amberger JS,Hamosh A.Searching Online Mendelian Inheritance in Man(OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes[J].Curr Protoc Bioinformatics,2017,58:1.2.1-1.2.12.[17]Wishart DS,Feunang YD,Guo AC,et al.DrugBank 5.0:a major update to the DrugBank database for 2018[J].Nucleic Acids Res,2018,46(D1):D1074-D1082.[18]Szklarczyk D,Gable AL,Nastou KC,et al.The STRING database in 2021:customizable protein-protein networks,and functional characterization of user-uploaded gene/measurement sets[J].Nucleic Acids Res,2021,49(D1):D605-D612.[19]Liu S,Xie X,Lei H,et al.Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis[J].Med Sci Monit,2019,25:1679-1693.[20]曾子玲,佟琳,刘思鸿,等.基于CiteSpace知识图谱的麦冬研究热点与趋势分析[J].中国中药杂志,2021,46(24):6549-6557.[21]Foutch D,Pham B,Shen T.Protein conformational switch discerned via network centrality properties[J].Comput Struct Biotechnol J,2021,19:3599-3608.[22]Wu DN,Guan L,Jiang YX,et al.Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis[J].Cardiovasc Diagn Ther,2019,9(6):545-560.[23]Carullo G,Cappello AR,Frattaruolo L,et al.Quercetin and derivatives:useful tools in inflammation and pain management[J].Future Med Chem,2017,9(1):79-93.[24]Tang SM,Deng XT,Zhou J,et al.Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects[J].Biomed Pharmacother,2020,121:109604.[25]Sun Z,Li Q,Hou R,et al.Kaempferol-3-O-glucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo[J].Toxicol Appl Pharmacol,2019,364:22-28.[26]Qu Y,Li X,Xu F,et al.Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis[J].Front Immunol,2021,12:679897.[27]Li S,Hao M,Wu T,et al.Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis[J].Biomed Pharmacother,2021,137:111419.[28]Kochumon S,Arefanian H,Azim R,et al.Stearic Acid and TNF-α Co-Operatively Potentiate MIP-1α Production in Monocytic Cells via MyD88 Independent TLR4/TBK/IRF3 Signaling Pathway[J].Biomedicines,2020,8(10):403.[29]Malik S,Suchal K,Khan S I,et al.Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways[J].Am J Physiol Renal Physiol,2017,313(2):F414-F422.[30]Fu J,Zeng W,Chen M,et al.Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma[J].Chem Biol Interact,2022,361:109966.[31]Kong X,Zhang Z,Fu T,et al.TNF-α regulates microglial activation via the NF-κB signaling pathway in systemic lupus erythematosus with depression[J].Int J Biol Macromol,2019,125:892-900.[32]Chen J,Liu G Z,Sun Q,et al.Protective effects of ginsenoside Rg3 on TNF-α-induced human nucleus pulposus cells through inhibiting NF-κB signaling pathway[J].Life Sci,2019,216:1-9.

更新日期/Last Update: 1900-01-01