[1]蒋漪桦,朱 宇,杜洪灵,等.Lnc RNA TUC338影响人类宫颈癌细胞的蛋白组学分析[J].医学信息,2022,35(13):18-27.[doi:10.3969/j.issn.1006-1959.2022.13.004]
 JIANG Yi-hua,ZHU Yu,DU Hong-ling,et al.Proteomics Analysis of Lnc RNA TUC338 Affecting Human Cervical Cancer Cells[J].Medical Information,2022,35(13):18-27.[doi:10.3969/j.issn.1006-1959.2022.13.004]
点击复制

Lnc RNA TUC338影响人类宫颈癌细胞的蛋白组学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年13期
页码:
18-27
栏目:
生物信息学
出版日期:
2022-07-01

文章信息/Info

Title:
Proteomics Analysis of Lnc RNA TUC338 Affecting Human Cervical Cancer Cells
文章编号:
1006-1959(2022)13-0018-10
作者:
蒋漪桦朱 宇杜洪灵
(1.南华大学衡阳医学院,湖南 衡阳 421001;2.上海市普陀区人民医院妇产科,上海 200060;3.上海市普陀区人民医院检验科,上海 200060;4.上海市普陀区人民医院中心实验室,上海 200060)
Author(s):
JIANG Yi-huaZHU YuDU Hong-linget al.
(1.Hengyang Medical School,University of South China,Hengyang 421001,Hunan,China;2.Department of Gynecology and Obstetrics,Putuo District People’s Hospital,Shanghai200060,China;3.Department of Laboratory,Putuo District People’s Hospital,Shanghai200060,China;4.Department of Clinical Laboratory,Putuo District People’s Hospital,Shanghai 200060,China)
关键词:
宫颈癌长链非编码RNA TUC338非标记定量法蛋白组学
Keywords:
Cervical cancerLong-chain noncoding RNA TUC338Label-freeProteomics
分类号:
R737.33
DOI:
10.3969/j.issn.1006-1959.2022.13.004
文献标志码:
A
摘要:
目的 探究长链非编码RNA TUC338影响人类宫颈癌细胞的分子机制。方法 将人类宫颈癌细胞Hela细胞分为实验组(TUC338组)与对照组(rLV组),分别感染rLV-hTUC338-ZsGreen-Puro慢病毒及rLV-ZsGreen-Puro慢病毒,RT-PCR检测两组细胞Lnc RNA TUC338表达量,并对两组细胞进行蛋白质谱分析。结果 感染慢病毒后所有细胞均有绿色荧光显示,RT-PCR结果显示TUC338组Lnc RNA TUC338表达量较rLV组增加,两组均显示较多的蛋白条带;非标记定量法蛋白测序共检测到4323个蛋白。蛋白差异分析显示:与rLV组比较,在TUC338组中下调的蛋白有194个,上调的蛋白有225个。其中,重要的下调蛋白有:LAMB1、HNRNPH3、COX2等,上调蛋白有:EPPK1、ITPR1、AKR1C2等。最显著的下调GO为磷酸化修饰功能,上调GO为细胞骨架功能,最显著的下调KEGG通路为半乳糖代谢通路,上调KEGG通路为肌动蛋白细胞骨架调节通路。共检测到含WD40 repeat结构域(WD40 repeat)等20个蛋白结构域。rLV组和rLV-TUC338组中有显著差异的结构域包括Haem peroxidase,animal等。主要亚细胞成分及主要差异亚细胞成分均为核蛋白,分别占34.23%、24.22%。rLV组和rLV-TUC338组中下调的互作网主要包括:prot1(P37268)-prot2(O95864)、prot1(Q6FGH9)-prot2(Q13363)等。上调的互作网主要包括:prot1(P60520)-prot2(A0A024RBQ5)、prot1(P60520)-prot2(Q06330)等。结论 Lnc RNA TUC338影响了人类宫颈癌细胞的蛋白组学,是宫颈癌的抑癌基因,并通过糖代谢、磷酸化、细胞骨架这3个通路抑制肿瘤发展。
Abstract:
Objective To explore the molecular mechanism of long-chain non-coding RNA TUC338 affecting human cervical cancer cells.Methods Human cervical cancer Hela cells were divided into experimental group (TUC338 group) and control group (rLV group). rLV-hTUC338-ZsGreen-Puro lentivirus and rLV-ZsGreen-Puro lentivirus were transfected respectively. The expression of Lnc RNA TUC338 in the two groups was detected by RT-PCR, and the protein spectrum of the two groups was analyzed.Results All cells were fluorescently green after infection with lentivirus. The results of RT-PCR showed that the expression of Lnc RNA TUC338 in TUC338 group was higher than that in rLV group, and both groups showed more protein bands. A total of 4323 proteins were detected by non-labeled quantitative protein sequencing. Protein difference analysis showed that compared with the rLV group, 194 proteins were down-regulated and 225 proteins were up-regulated in the TUC338 group. Among them, the important down-regulated proteins were LAMB1, HNRNPH3, COX2 and up-regulated proteins were EPPK1, ITPR1, AKR1C2 and so on. The most significant down-regulation of GO was phosphorylation modification function, and up-regulation of GO was cytoskeleton function. The most significant down-regulation of KEGG pathway was galactose metabolism pathway, and up-regulation of KEGG pathway was actin cytoskeleton regulation pathway. A total of 20 protein domains including WD40 repeat domain were detected. In rLV group and rLV-TUC338 group, there were significant differences in domains including Haem peroxidase, animals, etc. The main subcellular components and the main differential subcellular components were nuclear proteins, accounting for 34.23% and 24.22%, respectively. The down-regulated interaction network in rLV group and rLV-TUC338 group mainly included: prot1(P37268)-prot2 (O95864), prot1(Q6FGH9)-prot2 (Q13363), etc. The up-regulated interaction network mainly included: prot1(P60520)-prot2 (A0A024RBQ5), prot1(P60520)-prot2(Q06330), etc.Conclusion Lnc RNA TUC338 affects the proteomics of human cervical cancer cells, is a tumor suppressor gene of cervical cancer, and inhibits tumor development through glucose metabolism, phosphorylation and cytoskeleton.

参考文献/References:

[1]Zhang YX,Yuan J,Gao ZM,et al.LncRNA TUC338 promotes invasion of lung cancer by activating MAPK pathway[J].Eur Rev Med Pharmacol Sci,2018,22(2):443-449.[2]Li G,Zhang Y,Mao J,et al.LncRNA TUC338 is overexpressed in prostate carcinoma and downregulates miR-466[J].Gene,2019,707:224-230.[3]Qian T,Zhang H,Yu S,et al.Knockdown of lncRNA TUC338 inhibits esophageal cancer cells migration and invasion[J].J Thorac Dis,2021,13(5):3061-3069.[4]Dos Santos LN,Castaneda L,de Aguiar SS,et al.Health-related Quality of Life in Women with Cervical Cancer[J].Rev Bras Ginecol Obstet,2019,41(4):242-248.[5]Lammerink EA,de Bock GH,Pras E,et al.Sexual functioning of cervical cancer survivors: a review with a female perspective[J].Maturitas,2012,72(4):296-304.[6]Wu ZH,Zhong Y,Zhou T,et al.miRNA biomarkers for predicting overall survival outcomes for head and neck squamous cell carcinoma[J].Genomics,2021,113(1 Pt 1):135-141.[7]Ishfaq M,Bashir N,Riaz SK,et al.Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients[J].Genes (Basel),2022,13(3):549.[8]Cai L,Hu C,Yu S,et al.Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer[J].BMC Cancer,2020,20(1):1133.[9]Xiong Z,Ye L,Zhenyu H,et al.ANP32E induces tumorigenesis of triple-negative breast cancer cells by upregulating E2F1[J].Mol Oncol,2018,12(6):896-912.[10]Huang J,Gao W,Liu H,et al.Up-regulated ANP32E promotes the thyroid carcinoma cell proliferation and migration via activating AKT/mTOR/HK2-mediated glycolysis[J].Gene,2020,750:144681.[11]Miao S,Sch?覿fer P,Nojszewski J,et al.DIAPH1 regulates chromosomal instability of cancer cells by controlling microtubule dynamics[J].Eur J Cell Biol,2021,100(3):151156.[12]Flat W,Borowski S,Paraschiakos T,et al.DIAPH1 facilitates paclitaxel-mediated cytotoxicity of ovarian cancer cells[J].Biochem Pharmacol,2022,197:114898.[13]Schmidt M,Rohe A,Platzer C,et al.Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases[J].Molecules,2017,22(12):2045.[14]Taddei ML,Pardella E,Pranzini E,et al.Role of tyrosine phosphorylation in modulating cancer cell metabolism[J].Biochim Biophys Acta Rev Cancer,2020,1874(2):188442.[15]Shao C,Wang Y,Pan M,et al.The DNA damage repair-related gene PKMYT1 is a potential biomarker in various malignancies[J].Transl Lung Cancer Res,2021,10(12):4600-4616.[16]Diamond EL,Durham BH,Ulaner GA,et al.Efficacy of MEK inhibition in patients with histiocytic neoplasms[J].Nature,2019,567(7749):521-524.[17]Conte F,van Buuringen N,Voermans NC,et al.Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look[J].Biochim Biophys Acta Gen Subj,2021,1865(8):129898.[18]Li Y,Liang R,Sun M,et al.AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation[J].Cancer Lett,2020,478:82-92.[19]Cao B,Deng H,Cui H,et al.Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation[J].Cancer Cell Int,2021,21(1):481.[20]Dalghi MG,Ferreira-Gomes M,Rossi JP.Regulation of the Plasma Membrane Calcium ATPases by the actin cytoskeleton[J].Biochem Biophys Res Commun,2018,506(2):347-354.[21]Xu Q,Huff LP,Fujii M,et al.Redox regulation of the actin cytoskeleton and its role in the vascular system[J].Free Radic Biol Med,2017,109:84-107.[22]Alexandrova AY,Chikina AS,Svitkina TM.Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells[J].Int Rev Cell Mol Biol,2020,356:197-256.[23]Poli A,Abdul-Hamid S,Zaurito AE,et al.PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity[J].Proc Natl Acad Sci U S A,2021,118(31):e2010053118.[24]Hu A,Zhao XT,Tu H,et al.PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P(2) homeostasis[J].J Lipid Res,2018,59(3):507-514.[25]Ravi A,Palamiuc L,Loughran RM,et al.PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay[J].Dev Cell,2021,56(11):1661-1676.e10.[26]Shin YJ,Sa JK,Lee Y,et al.PIP4K2A as a negative regulator of PI3K in PTEN-deficient glioblastoma[J].J Exp Med,2019,216(5):1120-1134.

相似文献/References:

[1]廖加群,曹 雪,陈燕平,等.宫颈癌盆腔淋巴结转移分布及危险因素分析[J].医学信息,2018,31(03):25.[doi:10.3969/j.issn.1006-1959.2018.03.008]
 LIAO Jia-qun,CAO Xue,CHEN Yan-ping,et al.Distribution and Risk Factors of Pelvic Lymph Node Metastasis in Cervical Cancer[J].Medical Information,2018,31(13):25.[doi:10.3969/j.issn.1006-1959.2018.03.008]
[2]徐 洁.宫颈癌筛查及预防的研究进展[J].医学信息,2018,31(09):70.[doi:10.3969/j.issn.1006-1959.2018.09.022]
 XU Jie.Advances in Screening and Prevention of Cervical Cancer[J].Medical Information,2018,31(13):70.[doi:10.3969/j.issn.1006-1959.2018.09.022]
[3]蔡亚磊,邓思雨,杨 健.宫颈癌放疗增敏的研究现状[J].医学信息,2022,35(09):65.[doi:10.3969/j.issn.1006-1959.2022.09.016]
 CAI Ya-lei,DENG Si-yu,YANG Jian.Research Status of Radiotherapy Sensitization for Cervical Cancer[J].Medical Information,2022,35(13):65.[doi:10.3969/j.issn.1006-1959.2022.09.016]
[4]车 莹.HPV感染与宫颈病变相关性的研究[J].医学信息,2022,35(09):84.[doi:10.3969/j.issn.1006-1959.2022.09.021]
 CHE Ying.Study on the Correlation Between HPV Infection and Cervical Lesions[J].Medical Information,2022,35(13):84.[doi:10.3969/j.issn.1006-1959.2022.09.021]
[5]曹 亮,郝 朋,李阳明,等.宫颈癌所致输尿管梗阻患者输尿管支架置入成功率影响因素的Meta分析[J].医学信息,2022,35(09):124.[doi:10.3969/j.issn.1006-1959.2022.09.031]
 CAO Liang,HAO Peng,LI Yang-ming,et al.Meta Analysis of Factors Influencing Success Rate of Ureteral Stent Implantation in Patients with Ureteral Obstruction Caused by Cervical Cancer[J].Medical Information,2022,35(13):124.[doi:10.3969/j.issn.1006-1959.2022.09.031]
[6]覃念群,刘 楷,米镜霖,等.基于生物信息学分析筛选与宫颈癌预后相关的关键基因[J].医学信息,2022,35(10):8.[doi:10.3969/j.issn.1006-1959.2022.10.002]
 QIN Nian-qun,LIU Kai,MI Jing-lin,et al.Screening Key Genes Related to the Prognosis of Cervical Cancer Based on Bioinformatics Analysis[J].Medical Information,2022,35(13):8.[doi:10.3969/j.issn.1006-1959.2022.10.002]
[7]黄 花,徐冬冬,章丽霞.TGF-β1在宫颈癌中的研究进展[J].医学信息,2018,31(12):31.[doi:10.3969/j.issn.1006-1959.2018.12.011]
 HUANG Hua,XU Dong-dong,ZHANG Li-xia.Research Progress of TGF-β1 in Cervical Cancer[J].Medical Information,2018,31(13):31.[doi:10.3969/j.issn.1006-1959.2018.12.011]
[8]夏易曼娜,李虎成.腹腔镜下宫颈癌根治术与传统开腹手术的对比研究[J].医学信息,2018,31(12):115.[doi:10.3969/j.issn.1006-1959.2018.12.036]
 XIA Yi-manna,LI Hu-cheng.Comparative Study of Laparoscopic Radical Resection of Cervical Cancer and Traditional Open Surgery[J].Medical Information,2018,31(13):115.[doi:10.3969/j.issn.1006-1959.2018.12.036]
[9]杨 军,王翠平,李 龙,等.义安区体检HPV-DNA筛查结果分析[J].医学信息,2018,31(14):136.[doi:10.3969/j.issn.1006-1959.2018.14.041]
 YANG Jun,WANG Cui-ping,LI Long,et al.Analysis of the Results of HPV-DNA Screening in the Medical Examination of Yian District[J].Medical Information,2018,31(13):136.[doi:10.3969/j.issn.1006-1959.2018.14.041]
[10]王双英,张 娜,刘 芳.具有高危复发因素的早期宫颈癌术后辅助治疗进展[J].医学信息,2018,31(15):33.[doi:10.3969/j.issn.1006-1959.2018.15.012]
 WANG Shuang-ying,ZHANG Na,LIU Fang.Advances in Postoperative Adjuvant Therapy for Early Cervical Cancer with High Risk of Recurrence[J].Medical Information,2018,31(13):33.[doi:10.3969/j.issn.1006-1959.2018.15.012]

更新日期/Last Update: 1900-01-01