[1]李艳娜,王静一,陈琦蕴,等.B族链球菌基因cpsG影响人类宫颈癌细胞蛋白组学分析[J].医学信息,2023,36(14):8-15.[doi:10.3969/j.issn.1006-1959.2023.14.002]
 LI Yan-na,WANG Jing-yi,CHEN Qi-yun,et al.Proteomic Analysis of Group B Streptococcus Gene cpsG Affecting Human Cervical Cancer Cells[J].Journal of Medical Information,2023,36(14):8-15.[doi:10.3969/j.issn.1006-1959.2023.14.002]
点击复制

B族链球菌基因cpsG影响人类宫颈癌细胞蛋白组学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年14期
页码:
8-15
栏目:
生物信息学
出版日期:
2023-07-15

文章信息/Info

Title:
Proteomic Analysis of Group B Streptococcus Gene cpsG Affecting Human Cervical Cancer Cells
文章编号:
1006-1959(2023)14-0008-08
作者:
李艳娜王静一陈琦蕴
(同济大学医学院,上海 200092)
Author(s):
LI Yan-naWANG Jing-yiCHEN Qi-yunet al.
(School of Medicine,Tongji University,Shanghai 200092,China)
关键词:
B族链球菌相关基因cpsG人类宫颈癌细胞蛋白质组学质谱分析
Keywords:
Group B Streptococcus genescpsGHuman cervical cancer cellsProteomicsMass spectrometry analysis
分类号:
R34
DOI:
10.3969/j.issn.1006-1959.2023.14.002
文献标志码:
A
摘要:
目的 探讨B族链球菌基因cpsG影响人类宫颈癌细胞蛋白组学。方法 通过人工合成的方法将cpsG的读码框序列(ORF)融合HA标签连接到质粒pLVX-mCMV-ZsGreen的限制性内切酶EcoRI和BamHI之间构建稳定表达cpsG人类宫颈癌Hela细胞系。提取rLV组和rLV-cpsG组的总蛋白质,并通过12%SDS-PAGE电泳分析后,进行非标记(Label-free)蛋白质酶解肽段质谱分析。结果 经蛋白质酶解肽段质谱分析显示,rLV组鉴定出3552个蛋白,rLV-cpsG组鉴定出3702个蛋白;与rLV组相比,rLV-cpsG组中上调的蛋白为229个,下调的蛋白为225个。GO分析结果显示,细胞组分主要包括膜完整性、细胞核、核糖体;分子功能主要包括蛋白结合、ATP结合、GTP结合、DNA结合、RNA结合;生物过程主要包括翻译、代谢、蛋白磷酸化、跨膜。KEGG通路富集分析显示,Cellular Processes通路主要包括细胞生长与凋亡(179个)、细胞活力(72个)、真核细胞群(140个)、转运和代谢(270个);Environmental Information Processing通路有膜转运(11个)、信号转导(324个);Genetic Information Processing通路有复制与修复(51个)、转录(133个)、翻译(328个);Human Diseases通路有癌症(258个);Metabolism通路有氨基酸代谢(110个)、糖代谢(144个);Organismal Systems通路包括内分泌系统(174个)。蛋白质-蛋白质相互作用结果显示,下调的蛋白互作网络主要包括prot1(MGST1)∶prot2(GCLC)、prot1(MGST1)∶prot2(MYH10)、prot1(MGST1)∶prot2(UGDH)、prot1(MGST1)∶prot2(GCLM)、prot1(PKP2)∶prot2(CDH2)、prot1(PKP2)∶prot2(A8K2T7);上调的蛋白互作网络主要包括prot1(SLC7A2)∶prot2(TXN)、prot1(SLC7A2)∶prot2(KYNU)、prot1(SLC7A2)∶prot2(MCAT)、prot1(SLC7A2)∶prot2(JUNB)、prot1SLC7A2)∶prot2(BOLA2)、prot1(SLC7A2)∶prot2(FN1)。结论 B族链球菌基因cpsG影响了人类宫颈癌细胞的蛋白组学,该研究为明确cpsG在人类宫颈癌细胞中发生作用机制及其临床应用提供了基础资料。
Abstract:
Objective To investigate the effect of group B streptococcus gene cpsG on the proteomics of human cervical cancer cells.Methods A stable CPSG-expressing human cervical cancer Hela cell line was constructed by linking the cpsG Read frame sequence (ORF) fusion HA tag to the restriction enzymes EcoRI and BamHI of plasmid pLVX-mCMV-ZsGreen. The total proteins of rLV group and RLV-CPSG group were extracted and analyzed by 12% SDS-PAGE electrophoresis, then Label-free protein enzymolytic peptide mass spectrometry was performed.Results According to mass spectrometry, 3552 proteins were identified in rLV group and 3702 proteins were identified in rLV-cpsG group. Compared with the rLV group, 229 proteins were up-regulated and 225 proteins were down-regulated in the rLV-cpsG group. The results of GO analysis showed that the cell components mainly included membrane integrity, nucleus and ribosome; the molecular functions mainly include protein binding, ATP binding, GTP binding, DNA binding and RNA binding; biological processes mainly include translation, metabolism, protein phosphorylation, and transmembrane. Enrichment analysis of KEGG pathways showed that Cellular Processes mainly included cell growth and apoptosis (179), cell viability (72), eukaryotic cell population (140), and transport and metabolism (270); Environmental Information Processing pathways included membrane transport (11) and signal transduction (324); Genetic Information Processing pathways were replication and repair (51), transcription (133) and translation (328). There were cancers in the Human Diseases pathway (258); The Metabolism pathways include amino acid metabolism (110) and glucose metabolism (144). Organismal Systems channels include the endocrine system (174). The protein-protein interaction results showed that the down-regulated protein interaction networks mainly included prot1(MGST1)∶prot2(GCLC)、prot1(MGST1)∶prot2(MYH10)、prot1(MGST1)∶prot2(UGDH)、prot1(MGST1)∶prot2(GCLM)、prot1(PKP2)∶prot2(CDH2)、prot1(PKP2)∶prot2(A8K2T7); the up-regulated protein interaction networks mainly included prot1(SLC7A2)∶prot2(TXN)、prot1(SLC7A2)∶prot2(KYNU)、prot1(SLC7A2)∶prot2(MCAT)、prot1(SLC7A2)∶prot2(JUNB)、prot1SLC7A2)∶prot2(BOLA2)、prot1(SLC7A2)∶prot2(FN1).Conclusion Group B streptococcus gene cpsG affects the proteomics of human cervical cancer cells. This study provides basic data for clarifying the role of cpsG in human cervical cancer cells and its clinical application.

参考文献/References:

[1]Raabe VN,Shane AL.Group B Streptococcus (Streptococcus agalactiae) [J].Microbiol Spectr,2019,7(2):10.1128/microbiolspec.GPP3-0007-2018.[2]李艳娜,支恒,王莘童,等.B族链球菌基因cpsG抑制人类宫颈癌细胞增殖的探讨[J].同济大学学报(医学版),2022,43(3):316-323.[3]Zhang H,Liu T,Zhang Z,et al.Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer[J].Cell,2016,166(3):755-765.[4]Aritro N,Amrita O,Kevin Y C,et al.Palmitate-Induced IRE1-XBP1-ZEB Signaling Represses Desmoplakin Expression and Promotes Cancer Cell Migration[J].Mol Cancer Res,2021,19(2):240-248.[5]Liu WY,Cai TH,Li LJ,et al.MiR-200a Regulates Nasopharyngeal Carcinoma Cell Migration and Invasion by Targeting MYH10[J].J Cancer,2020,11(10):3052-3060.[6]Hou PP,Luo LJ,Chen HZ,et al.Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment[J].Mol Cell,2020,78(6):1192-1206.e10.[7]Xu L,Ma Y,Zhang H,et al.HMGA2 regulates circular RNA ASPH to promote tumor growth in lung adenocarcinoma[J].Cell Death Dis,2020,11(7):593.[8]Wu Y,Xu Y.Integrated bioinformatics analysis of expression and gene regulation network of COL12A1 in colorectal cancer[J].Cancer Med,2020,9(13):4743-4755.[9]Lin LH,Chou HC,Chang SJ,et al.Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis[J].J Cell Mol Med,2020,24(20):11883-11902. [10]Shi W,He J,Huang Z,et al.Integrin β5 enhances the malignancy of human colorectal cancer by increasing the TGF-β signaling[J].Anticancer Drugs,2021,32(7):717-726.[11]Thaher P,Gunnar CH.Membrane mucins of the intestine at a glance[J].J Cell Sci,2020,133(5):jcs240929.[12]Julie C,Ovijit C.Beyond proteases: Basement membrane mechanics and cancer invasion[J].J Cell Biol,2019,218(8):2456-2469.[13]Katharina J,George AC,Martin P.RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer[J].Int J Mol Sci,2020,21(8):2969.[14]Nikos K,George P.Reprogramming of fatty acid metabolism in cancer[J].Br J Cancer,2020,122(1):4-22.[15]Saeed N,Neda S,Elham B,et al.The relation between PI3K/AKT signalling pathway and cancer[J].Gene,2019,698:120-128.[16]Kamelia H,Mohammad HJ,Sima S,et al.Therapeutic Potency of PI3K Pharmacological Inhibitors of Gastrointestinal Cancer[J].Middle East J Dig Dis,2019,11(1):5-16.[17]Kuang FM,Liu J,Xie YC,et al.MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells[J].Cell Chem Biol,2021,28(6):765-775.e5.[18]Sun JL,Zhou CH,Ma QN,et al.High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection[J].J Cancer,2019,10(15):3333-3343.[19]Gao LL,Li X,Guo Q,et al.Identification of PKP 2/3 as potential biomarkers of ovarian cancer based on bioinformatics and experiments[J].Cancer Cell Int,2020,20:509.[20]Gao S,Zhao ZY,Wu R,et al.MicroRNA-194 regulates cell viability and apoptosis by targeting CDH2 in prostatic cancer[J].Onco Targets Ther,2018,11:4837-4844.[21]Sun TS,Bi FF,Liu ZN,et al.SLC7A2 serves as a potential biomarker and therapeutic target for ovarian cancer[J].Aging (Albany NY),2020,12(13):13281-13296.[22]Maryam A,Ishita G,Radoslaw SR,et al.KYNU,a novel potential target that underpins CD44-promoted breast tumour cell invasion[J].J Cell Mol Med,2021,25(5):2309-2314.

更新日期/Last Update: 1900-01-01