[1]姜 瑞,张 征,谭爱华.慢性阻塞性肺疾病与骨质疏松症的生物信息学分析[J].医学信息,2023,36(17):1-6.[doi:10.3969/j.issn.1006-1959.2023.17.001]
 JIANG Rui,ZHANG Zheng,TAN Ai-hua.Bioinformatics Analysis of Chronic Obstructive Pulmonary Disease and Osteoporosis[J].Journal of Medical Information,2023,36(17):1-6.[doi:10.3969/j.issn.1006-1959.2023.17.001]
点击复制

慢性阻塞性肺疾病与骨质疏松症的生物信息学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年17期
页码:
1-6
栏目:
生物信息学
出版日期:
2023-09-01

文章信息/Info

Title:
Bioinformatics Analysis of Chronic Obstructive Pulmonary Disease and Osteoporosis
文章编号:
1006-1959(2023)17-0001-06
作者:
姜 瑞张 征谭爱华
(1.湖北中医药大学针灸骨伤学院,湖北 武汉 430065;2.湖北中医药大学附属黄冈市中医医院骨科,湖北 黄冈 438000;3.北京中医药大学博士后流动站,北京 100007)
Author(s):
JIANG RuiZHANG ZhengTAN Ai-hua
(1.College of Acupuncture and Moxibustion and Orthopaedics,Hubei University of Chinese Medicine,Wuhan 430065,Hubei,China;2.Department of Orthopedics,Huanggang Hospital of Traditional Chinese Medicine Affiliated with Hubei University of Chinese Medicine, Huanggang 438000,Hubei,China;3.Beijing University of Chinese Medicine Postdoctoral Station,Beijing 100007,China)
关键词:
生物信息学骨质疏松症慢性阻塞性肺疾病靶基因
Keywords:
BioinformaticsOsteoporosisChronic obstructive pulmonary diseaseTarget gene
分类号:
R259
DOI:
10.3969/j.issn.1006-1959.2023.17.001
文献标志码:
A
摘要:
目的 利用生物信息学分析慢性阻塞性肺疾病(COPD)与骨质疏松症(OP)的关系。方法 在Genecards、OMIM、DRUGBANK等数据库查找出COPD和OP的疾病基因靶点,将所获得靶点分别进行汇总、筛选、去重后分别得到两组疾病的最终基因靶点。将两组疾病的最终基因靶点取交集,将共同基因靶点导入STRING数据库构建蛋白互作(PPI)网络图,下载tsv格式的PPI网络,导入Cytoscape3.9.1软件,通过插件cytoHubba,筛选出Degree前20位的目标靶基因。利用DAVID数据库对两种疾病的共同靶基因进行GO和KEGG富集分析。结果 筛选出COPD相关基因393个、OP相关基因1389个,取交集后获得共同靶点基因172个,根据PPI网络图可知,STAT3、IL6、AKT1、CTNNB1、IL10、MAPK1、IL17、TNF等为COPD与OP的共同关键靶基因,GO富集显示其主要与雌激素代谢、炎症反应、细胞对缺氧的反应、免疫反应、增龄等相关,KEGG信号通路包括JAK-STAT信号通路、HIF-1信号通路、IL-17信号通路等。结论 通过COPD与OP的共同关键基因和涉及的信号通路,为了解两种疾病相关性及为后续相关研究提供了一定的理论基础。
Abstract:
Objective To analyze the relationship between chronic obstructive pulmonary disease (COPD) and osteoporosis (OP) by bioinformatics.Methods The disease gene targets of COPD and OP were identified in Genecards, OMIM, DRUGBANK and other databases, and the obtained targets were aggregated, screened and de-duplicated to obtain the final gene targets of the two groups of diseases, respectively. The final gene targets of the two groups were intersected, and the common gene targets were imported into the STRING database to construct a protein interaction (PPI) network diagram. The tsv format PPI network was downloaded and imported into Cytoscape 3.9.1 software. The top 20 target genes of Degree were screened by the plug-in cytoHubba. GO and KEGG enrichment analysis of the common target genes of the two diseases was performed using the DAVID database.Results A total of 393 COPD-related genes and 1389 OP-related genes were screened out, and 172 common target genes were obtained after intersection. According to the PPI network diagram, STAT3, IL6, AKT1, CTNNB1, IL10, MAPK1, IL17 and TNF were the common key target genes of COPD and OP. GO enrichment was mainly related to estrogen metabolism, inflammatory response, cell response to hypoxia, immune response and aging. KEGG signaling pathways included JAK-STAT signaling pathway, HIF-1 signaling pathway and IL-17 signaling pathway.Conclusion Through the common key genes and signaling pathways involved in COPD and OP, it provides a theoretical basis for understanding the correlation between the two diseases and for subsequent related research.

参考文献/References:

[1]Halpin D,Criner GJ,Papi A,et al.Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease[J].Am J Respir Crit Care Med,2021,203(1):24-36.[2]Wang C,Xu J,Yang L,et al.Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J].Lancet,2018,391(10131):1706-1717.[3]Rachner TD,Khosla S,Hofbauer LC.Osteoporosis: now and the future[J].Lancet,2011,377(9773):1276-1287.[4]夏维波,章振林,林华,等.原发性骨质疏松症诊疗指南(2017)[J].中国骨质疏松杂志,2019,25(3):281-309.[5]Cecins E,Cavalheri V,Taaffe DR,et al.Prevalence of suspected poor bone health in people with chronic obstructive pulmonary disease - a cross-sectional exploratory study[J].Chron Respir Dis,2022,19:231422547.[6]Wan Q,Schoenmaker T,Jansen ID,et al.Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone[J].Bone,2016,86:10-21.[7]Chen YW,Coxson HO,Coupal TM,et al.The contribution of thoracic vertebral deformity and arthropathy to trunk pain in patients with chronic obstructive pulmonary disease (COPD)[J].Respir Med,2018,137:115-122.[8]Vilgelm AE.Illuminating the mechanism of IL-6-mediated immunotherapy resistance[J].Cell Rep Med,2023,4(1):100901.[9]Xu J,Lin H,Wu G,et al.IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma[J].Front Oncol, 2021,11:760971.[10]Mannion JM,McLoughlin RM,Lalor SJ.The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease[J].Clin Rev Allergy Immunol,2023,64(2):161-178.[11]Fischer V,Haffner-Luntzer M.Interaction between bone and immune cells: Implications for postmenopausal osteoporosis[J].Semin Cell Dev Biol,2022,123:14-21.[12]Li Y,Lu L,Xie Y,et al.Interleukin-6 Knockout Inhibits Senescence of Bone Mesenchymal Stem Cells in High-Fat Diet-Induced Bone Loss[J].Front Endocrinol (Lausanne),2020,11:622950.[13]Eastell R,O’Neill TW,Hofbauer LC,et al.Postmenopausal osteoporosis[J].Nat Rev Dis Primers,2016,2:16069.[14]Jordan RE,Miller MR,Lam KB,et al.Sex, susceptibility to smoking and chronic obstructive pulmonary disease: the effect of different diagnostic criteria. Analysis of the Health Survey for England[J].Thorax,2012,67(7):600-605.[15]Amaral A,Strachan DP,Burney P,et al.Female Smokers Are at Greater Risk of Airflow Obstruction Than Male Smokers. UK Biobank[J].Am J Respir Crit Care Med,2017,195(9):1226-1235.[16]Gut-Gobert C,Cavailles A,Dixmier A,et al.Women and COPD: do we need more evidence?[J].Eur Respir Rev,2019,28(151):180055.[17]Zysman M,Raherison-Semjen C.Women’s COPD[J].Front Med (Lausanne),2021,8:600107.[18]Zhao K,Dong R,Yu Y,et al.Cigarette smoke-induced lung inflammation in COPD mediated via CCR1/JAK/STAT /NF-kappaB pathway[J].Aging (Albany NY),2020,12(10):9125-9138.[19]Strowitzki MJ,Cummins EP,Taylor CT.Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous?[J].Cells,2019,8(5):384.[20]Zhang HX,Yang JJ,Zhang SA,et al.HIF-1alpha promotes inflammatory response of chronic obstructive pulmonary disease by activating EGFR/PI3K/AKT pathway[J].Eur Rev Med Pharmacol Sci,2018,22(18):6077-6084.[21]Kaneshiro S,Ebina K,Shi K,et al.IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro[J].J Bone Miner Metab,2014,32(4):378-392.[22]Groetsch B,Schachtschabel E,Tripal P,et al.Inflammatory activation of the FcγR and IFNγR pathways co-influences the differentiation and activity of osteoclasts[J].Front Immunol,2022,13:958974.[23]Xu L,Zhang L,Zhang H,et al.The participation of fibroblast growth factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway[J].J Cell Biochem,2018,119(5):3819-3828.[24]Damerau A,Gaber T,Ohrndorf S,et al.JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration[J].Int J Mol Sci,2020,21(23):9004.[25]Meng X,Lin Z,Cao S,et al.Estrogen-mediated downregulation of HIF-1alpha signaling in B lymphocytes influences postmenopausal bone loss[J].Bone Res,2022,10(1):15.[26]Zhu J,Tang Y,Wu Q,et al.HIF-1alpha facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro[J].J Cell Physiol,2019,234(11):21182-21192.[27]Xi JC,Zang HY,Guo LX,et al.The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis[J].J Recept Signal Transduct Res,2015,35(6):640-645.

相似文献/References:

[1]汪钦生,邵 敏,姜 涛.绝经后妇女中骨质疏松患者血清钙磷、骨代谢指标与BMD的关系[J].医学信息,2019,32(04):1.[doi:10.3969/j.issn.1006-1959.2019.04.001]
 WANG Qin-sheng,SHAO Min,JIANG Tao.Relationship between Serum Calcium,Phosphorus and Bone Metabolism Markers and BMD in Postmenopausal Women with Osteoporosis[J].Journal of Medical Information,2019,32(17):1.[doi:10.3969/j.issn.1006-1959.2019.04.001]
[2]杨宵月,李建伟.LncRNA调控人类疾病关系数据库的研究[J].医学信息,2019,32(12):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
 YANG Xiao-yue,LI Jian-wei.LncRNA Regulation of Human Disease Relationship Database[J].Journal of Medical Information,2019,32(17):28.[doi:10.3969/j.issn.1006-1959.2019.12.010]
[3]操利超,张核子,余晨笛,等.CLDN11在结肠癌中的预后价值及其作为潜在免疫治疗靶点的研究[J].医学信息,2022,35(14):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
 CAO Li-chao,ZHANG He-zi,YU Chen-di,et al.The Prognostic Value of CLDN11 in Colon Cancer and its Potential Immunotherapy Targets[J].Journal of Medical Information,2022,35(17):10.[doi:10.3969/j.issn.1006-1959.2022.14.002]
[4]王婷婷,温凌杜,王子弘,等.基于DNA甲基化鉴定口腔鳞状细胞癌预后生物标志物[J].医学信息,2022,35(13):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
 WANG Ting-ting,WEN Ling-du,WANG Zi-hong,et al.Identification of Prognostic Biomarkers for Oral Squamous Cell Carcinoma Based on DNA Methylation[J].Journal of Medical Information,2022,35(17):28.[doi:10.3969/j.issn.1006-1959.2022.13.005]
[5]冯欢欢.骨质疏松症中医理论研究的文献计量学分析[J].医学信息,2022,35(16):28.[doi:10.3969/j.issn.1006-1959.2022.16.006]
 FENG Huan-huan.Bibliometric Analysis of TCM Theoretical Research on Osteoporosis[J].Journal of Medical Information,2022,35(17):28.[doi:10.3969/j.issn.1006-1959.2022.16.006]
[6]黄琪峰,郑琳琳,张 菁.甲状腺癌中miR-222关键靶基因预测及其信号通路分析[J].医学信息,2020,33(01):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
 HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Prediction of Key Target Genes of miR-222 in Thyroid Cancer and Analysis of Its Signal Pathway[J].Journal of Medical Information,2020,33(17):85.[doi:10.3969/j.issn.1006-1959.2020.01.026]
[7]李熹阳,谷明宇,华 琳.影响前列腺癌风险的关键基因识别[J].医学信息,2020,33(02):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
 LI Xi-yang,GU Ming-yu,HUA Lin.Identification of Key Genes Affecting Prostate Cancer Risk[J].Journal of Medical Information,2020,33(17):80.[doi:10.3969/j.issn.1006-1959.2020.02.022]
[8]黄 成,易尚辉,查文婷,等.基于生物信息学分析筛选舌鳞状细胞癌核心基因及其预后价值[J].医学信息,2020,33(03):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
 HUANG Cheng,YI Shang-hui,ZHA Wen-ting,et al.Screening Core Genes of Tongue Squamous Cell Carcinoma Based on Bioinformatics Analysis and Its Prognostic Value[J].Journal of Medical Information,2020,33(17):6.[doi:10.3969/j.issn.1006-1959.2020.03.002]
[9]吴超颖,陈 冬,吴超群,等.头颈部鳞状细胞癌预后相关的miRNAs的生物信息学分析[J].医学信息,2020,33(02):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
 WU Chao-ying,CHEN Dong,WU Chao-qun,et al.Bioinformatics Analysis of Prognosis-related miRNAs in Head and Neck Squamous Cell Carcinoma[J].Journal of Medical Information,2020,33(17):61.[doi:10.3969/j.issn.1006-1959.2020.02.017]
[10]胡昕倩,余雅婕,方 明.垂体瘤的基因芯片数据生物信息学分析[J].医学信息,2020,33(06):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
 HU Xin-qian,YU Ya-jie,FANG Ming.Bioinformatics Analysis of Gene Chip Data for Pituitary Tumors[J].Journal of Medical Information,2020,33(17):90.[doi:10.3969/j.issn.1006-1959.2020.06.026]
[11]汪 青,黄昊强,陈 勇,等.基于生物信息学分析二仙汤治疗膝关节骨性关节炎合并骨质疏松症的机制[J].医学信息,2024,37(06):1.[doi:10.3969/j.issn.1006-1959.2024.06.001]
 WANG Qing,HUANG Hao-qiang,CHEN Yong,et al.Mechanism of Erxian Decoction in the Treatment of Knee Osteoarthritis with Osteoporosis Based on Bioinformatics Analysis[J].Journal of Medical Information,2024,37(17):1.[doi:10.3969/j.issn.1006-1959.2024.06.001]

更新日期/Last Update: 1900-01-01