[1]陈 成,苏丹艳,覃素元,等.FKTN突变扩张型心肌病相关基因的生物信息学分析[J].医学信息,2025,38(09):8-13.[doi:10.3969/j.issn.1006-1959.2025.09.002]
 CHEN Cheng,SU Danyan,QIN Suyuan,et al.Bioinformatics Analysis of FKTN Mutant Dilated Cardiomyopathy Related Genes[J].Journal of Medical Information,2025,38(09):8-13.[doi:10.3969/j.issn.1006-1959.2025.09.002]
点击复制

FKTN突变扩张型心肌病相关基因的生物信息学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
38卷
期数:
2025年09期
页码:
8-13
栏目:
生物信息学
出版日期:
2025-05-01

文章信息/Info

Title:
Bioinformatics Analysis of FKTN Mutant Dilated Cardiomyopathy Related Genes
文章编号:
1006-1959(2025)09-0008-06
作者:
陈 成苏丹艳覃素元黄钰钦叶冰冰黄滟云庞玉生
广西医科大学第一附属医院儿科,广西 南宁 530021
Author(s):
CHEN Cheng SU Danyan QIN Suyuan HUANG Yuqin YE Bingbing HUANG Yanyun PANG Yusheng
Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
关键词:
扩张型心肌病基因检测FKTN生物信息学
Keywords:
Dilated cardiomyopathy Genetic testing FKTN Bioinformatics
分类号:
R542.2
DOI:
10.3969/j.issn.1006-1959.2025.09.002
文献标志码:
A
摘要:
目的 探讨FKTN基因突变在扩张型心肌病的致病机制。方法 在Gene Expression Omnibus数据库下载与FKTN相关的GSE138280基因表达谱,对该表达谱FKTN基因突变心肌组织及正常心肌组织的表达进行差异分析,并使用热图R包来呈现FKTN基因突变心肌组织的差异表达基因,进一步通过差异表达基因的富集分析来寻找富集通路,在富集通路上利用蛋白互作网络分析,寻找FKTN基因突变心肌组织的关键通路蛋白,寻找其致病机制及治疗靶点。结果 FKTN基因生物信息学分析中,与健康对照组相比,FKTN突变组鉴定出5636个差异表达基因,其中2630个上调,3006个下调。在上调基因中,GO分析发现主要集中在炎症反应、细胞外基质胶原纤维增殖方面,KEGG通路分析发现主要富集在细胞因子-细胞因子受体的相互作用、白介素17信号通路、肿瘤坏死因子信号通路、趋化因子信号通路、P53信号通路及细胞外基质受体相互作用,蛋白质互作网络分析发现关键的节点基因有Fn1、CD44、Kif18a、CXC、Saa3;在下调基因中,GO分析发现主要集中在钙的转运、心肌收缩、内质网、肌小节、微管、蛋白糖基化,KEGG通路分析发现主要富集在心肌收缩、扩张型心肌病、钙信号通路,蛋白质互作网络分析发现关键的节点基因有Asb15、Efcab2。结论 FKTN突变DCM小鼠的发病机制可能与心肌细胞内钙稳态、心肌细胞炎症、微管异常、细胞外基质增生有关。
Abstract:
Objective To investigate the pathogenic mechanism of FKTN gene mutation in dilated cardiomyopathy. Methods The GSE138280 gene expression profile related to FKTN was downloaded from the Gene Expression Omnibus database, and the differential expression of FKTN gene mutation myocardial tissue and normal myocardial tissue was analyzed. The heatmap R package was used to display the differentially expressed genes in the FKTN gene mutant myocardial tissue, and further enrichment analysis of the differentially expressed genes was performed to find the enrichment pathways. Protein interaction network analysis was used to find the key pathway proteins in the FKTN gene mutant myocardial tissue, and to find its pathogenic mechanism and therapeutic targets. Results Bioinformatics analysis of FKTN gene showed that compared with the healthy control group, 5636 differentially expressed genes were identified in the FKTN mutation group, of which 2630 were up-regulated and 3006 were down-regulated. Among the up-regulated genes, GO analysis found that it was mainly concentrated in inflammatory response and extracellular matrix collagen fiber proliferation. KEGG pathway analysis found that they were mainly enriched in the interaction of cytokine-cytokine receptor, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, chemokine signaling pathway, P53 signaling pathway and extracellular matrix receptor interaction. Protein interaction network analysis found that the key node genes were Fn1, CD44, Kif18a, CXC, Saa3; among the down-regulated genes, GO analysis found that they were mainly concentrated in calcium transport, myocardial contraction, endoplasmic reticulum, sarcomere, microtubule and protein glycosylation. KEGG pathway analysis found that they were mainly concentrated in myocardial contraction, dilated cardiomyopathy and calcium signaling pathway. Protein interaction network analysis found that the key node genes were Asb15 and Efcab2. Conclusion The pathogenesis of mice with FKTN mutation-related DCM may be related to intracardiac calcium homeostasis, cardiomyocyte inflammation, microtubule abnormalities, and extracellular matrix hyperplasia.

参考文献/References:

[1]Lipshultz SE,Law YM,Asante-Korang A,et al.Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association[J].Circulation,2019,140(1):e9-e68.[2]Jammal Addin MB,Young D,McCarrison S,et al.Dilated cardiomyopathy in a national paediatric population[J].Eur J Pediatr,2019,178(8):1229-1235.[3]Kaski JP,Norrish G,Gimeno Blanes JR,et al.Cardiomyopathies in children and adolescents: aetiology, management, and outcomes in the European Society of Cardiology EURObservational Research Programme Cardiomyopathy and Myocarditis Registry[J].Eur Heart J,2024,45(16):1443-1454.[4]Eldemire R,Mestroni L,Taylor MRG.Genetics of Dilated Cardiomyopathy[J].Annu Rev Med,2024,75:417-426.[5]Smith ED,Lakdawala NK,Papoutsidakis N,et al.Desmoplakin Cardiomyopathy, a Fibrotic and Inflammatory Form of Cardiomyopathy Distinct From Typical Dilated or Arrhythmogenic Right Ventricular Cardiomyopathy[J].Circulation,2020,141(23):1872-1884.[6]Hasselberg NE,Haland TF,Saberniak J,et al.Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation[J].Eur Heart J,2018,39(10):853-860.[7]Ben-Haim Y,Bird M,Johnson D,et al.RYR2 Variant and Sudden Death in Patients With Dilated Cardiomyopathy[J].J Am Coll Cardiol,2024,83(11):1105-1107.[8]Lee J,Termglinchan V,Diecke S,et al.Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy[J].Nature,2019,572(7769):335-340.[9]Faggiano A,Gherbesi E,Gnan E,et al.Subclinical systolic dysfunction in genotype-positive phenotype-negative relatives of dilated cardiomyopathy patients: A systematic review and meta-analysis[J].Eur J Heart Fail,2024,26(4):1097-1099.[10]Taniguchi-Ikeda M,Morioka I,Iijima K,et al.Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review[J].Mol Aspects Med,2016,51:115-124.[11]Beedle AM,Turner AJ,Saito Y,et al.Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy[J].J Clin Invest,2012,122(9):3330-3342.[12]Gaertner A,Burr L,Klauke B,et al.Compound Heterozygous FKTN Variants in a Patient with Dilated Cardiomyopathy Led to an Aberrant α-Dystroglycan Pattern[J].Int J Mol Sci,2022,23(12):6685.[13]Larra?觡aga-Moreira JM,Blanco-Arias P,San Millán-Tejado B,et al.Dilated cardiomyopathy and mild limb girdle muscular dystrophy caused by the p.Gly424Ser genetic variant in the fukutin gene[J].Rev Esp Cardiol (Engl Ed),2021,74(11):987-989.[14]Ritchie ME,Phipson B,Wu D,et al.limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Res,2015,43(7):e47.[15]Wu T,Hu E,Xu S,et al.clusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J].Innovation (Camb),2021,2(3):100141.[16]The Gene Ontology Consortium.The Gene Ontology Resource: 20 years and still GOing strong[J].Nucleic Acids Res,2019,47(D1):D330-D338.[17]Kanehisa M,Furumichi M,Tanabe M,et al.KEGG: new perspectives on genomes, pathways, diseases and drugs[J].Nucleic Acids Res,2017,45(D1):D353-D361.[18]Szklarczyk D,Gable AL,Lyon D,et al.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Res,2019,47(D1):D607-D613.[19]Ujihara Y,Kanagawa M,Mohri S,et al.Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure[J].Nat Commun,2019,10(1):5754.[20]Foltz SJ,Luan J,Call JA,et al.Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy[J].Skelet Muscle,2016,6:20.[21]Garvin AM,De Both MD,Talboom JS,et al.Transient ACE (Angiotensin-Converting Enzyme) Inhibition Suppresses Future Fibrogenic Capacity and Heterogeneity of Cardiac Fibroblast Subpopulations[J].Hypertension,2021,77(3):904-918.[22]Matthews E,Brassington R,Kuntzer T,et al.Corticosteroids for the treatment of Duchenne muscular dystrophy[J].Cochrane Database Syst Rev,2016,2016(5):CD003725.[23]Zhu Q,Combs ME,Bowles DE,et al.GRAF1 Acts as a Downstream Mediator of Parkin to Regulate Mitophagy in Cardiomyocytes[J].Cells,2024,13(5):448.

相似文献/References:

[1]余 玲,高 莉,陈艳梅,等.随访间隔时间对扩张型心肌病预后的影响研究[J].医学信息,2018,31(18):160.[doi:10.3969/j.issn.1006-1959.2018.18.052]
 YU Ling,GAO Li,CHEN Yan-mei,et al.The Effect of Follow-up Interval on the Prognosis of Dilated Cardiomyopathy[J].Journal of Medical Information,2018,31(09):160.[doi:10.3969/j.issn.1006-1959.2018.18.052]
[2]熊鹏锋.沙库巴曲缬沙坦联合美托洛尔对青年扩张型心肌病患者心功能及预后的影响[J].医学信息,2022,35(20):80.[doi:10.3969/j.issn.1006-1959.2022.20.020]
 XIONG Peng-feng.Effect of Sacubitril Valsartan Combined with Metoprolol on Cardiac Function and Prognosis in Young Patients with Dilated Cardiomyopathy[J].Journal of Medical Information,2022,35(09):80.[doi:10.3969/j.issn.1006-1959.2022.20.020]
[3]倪胜南,陈一鸣.基于生物信息学分析扩张型心肌病发病机制中潜在的自噬关键基因[J].医学信息,2023,36(01):17.[doi:10.3969/j.issn.1006-1959.2023.01.003]
 NI Sheng-nan,CHEN Yi-ming.Analysis of Potential Autophagy Key Genes in the Pathogenesis of Dilated Cardiomyopathy Based on Bioinformatics[J].Journal of Medical Information,2023,36(09):17.[doi:10.3969/j.issn.1006-1959.2023.01.003]
[4]李海志,李 特,胡晓倩,等.基因检测指导难治性高血压用药有效性及安全性的系统评价[J].医学信息,2023,36(19):34.[doi:10.3969/j.issn.1006-1959.2023.19.008]
 LI Hai-zhi,LI Te,HU Xiao-qian,et al.Systematic Evaluation of the Efficacy and Safety of Gene Detection in Guiding the Treatment of Refractory Hypertension[J].Journal of Medical Information,2023,36(09):34.[doi:10.3969/j.issn.1006-1959.2023.19.008]

更新日期/Last Update: 1900-01-01