[1]陈 威,梁 新,苏 捷,等.UPLC-Q-TOF-MS联合网络药理学分析滇黄芩抗菌的潜在药效物质及作用机制[J].医学信息,2022,35(23):18-24.[doi:10.3969/j.issn.1006-1959.2022.23.004]
 CHEN Wei,LIANG Xin,SU Jie,et al.Study on the Potential Effective Substances and Mechanism of Scutellaria Amoenain Antibacterial Based on UPLC-Q-TOF-MS and Network Pharmacology[J].Journal of Medical Information,2022,35(23):18-24.[doi:10.3969/j.issn.1006-1959.2022.23.004]
点击复制

UPLC-Q-TOF-MS联合网络药理学分析滇黄芩抗菌的潜在药效物质及作用机制()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年23期
页码:
18-24
栏目:
中医药信息学
出版日期:
2022-12-01

文章信息/Info

Title:
Study on the Potential Effective Substances and Mechanism of Scutellaria Amoenain Antibacterial Based on UPLC-Q-TOF-MS and Network Pharmacology
文章编号:
1006-1959(2022)23-0018-07
作者:
陈 威梁 新苏 捷
(1.云南省滇西抗病原植物资源筛选研究重点实验室(培育),云南 大理 671000;2.湖南中医药大学,湖南 长沙 410208)
Author(s):
CHEN WeiLIANG XinSU Jieet al.
(1.Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation),Dali 671000,Yunnan,China;2.Hunan University of Chinese Medicine,Changsha 410208,Hunan,China)
关键词:
滇黄芩抗菌超高液相色谱四级杆-飞行时间质谱网络药理学
Keywords:
Scutellaria amoenaAntibacterialUltra performance liquid chromatography-quadrupole-time-of-flight mass spectrometryNetwork pharmacology
分类号:
R285.5
DOI:
10.3969/j.issn.1006-1959.2022.23.004
文献标志码:
A
摘要:
目的 采用超高效液相色谱-四级杆飞行时间串联质谱(UPLC-Q-TOF-MS)技术、网络药理学分析滇黄芩抗菌的潜在药效物质及作用机制。方法 首先,采用UPLC-Q-TOF-MS技术鉴定滇黄芩化学成分,并利用TCMSP数据库数据库预测其作用靶点,将结果在GeneCards数据库中检索抗菌相关靶点求交集获得关键核心靶点。其次,借助STRING数据库进行蛋白互作分析,并利用Cytoscape 3.6.1软件构建蛋白互作和“活性成分-靶点-通路”网络。最后,通过DAVID数据库进行基因本体论(GO)功能和基因组百科全书(KEGG)通路富集分析,并利用分子对接技术验证上述结果。结果 从滇黄芩中鉴定出了21个化学成分;网络药理学研究显示,10个关键抗菌作用的活性成分和35个潜在靶点,主要通过10条关键信号通路发挥抗菌作用。结论 滇黄芩通过多成分、多靶点、多通路的协同作用发挥抗菌作用,为进一步开展滇黄芩抗菌的药效物质及作用机制研究提供了新的思路和线索。
Abstract:
Objective To explore the potential molecular mechanism of antibacterial of Scutellaria amoena by using ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology and network pharmacology.Methods At first, the main chemical components were analyzed by UPLC-Q-TOF-MS, and the targets were predicted by TCMSP database. The key core targets were obtained by intersection of the results and the antibacterial related targets retrieved from GeneCards databases. Secondly, STRING database was used for protein interaction analysis, protein interaction and active components-targets-pathway network was constructed by Cytoscape 3.6.1. Finally, gene ontology (GO) function and KEGG pathway enrichment analysis were performed by DAVID database, and the above results were verified by molecular docking technique.Result A total of 21 chemical constituents in Scutellaria amoena were identified by UPLC-Q-TOF-MS. The network pharmacological studies revealed 10 active components and 35 potential targets of key antidepressant effects, which mainly exert antibacterial effects by 10 key signaling pathways.Conclusion This study revealed the antibacterial action of multiple components, multiple targets and multiple pathways of Scutellaria amoenaby, and provides a new idea and clue for the further research on the pharmacodynamical substances and the mechanism of antibacterial activities of Scutellaria amoena.

参考文献/References:

[1]郑进,张超,钱子刚.云南民族医药大辞典[M].上海:上海科学技术出版社,2019:673. [2]付胜男,虎春艳,刘海鸥,等.滇黄芩地上部分化学成分的分离鉴定[J].中国实验方剂学杂志,2018,24(10):55-59.[3]李欣坪,王蒙蒙,王子晨,等.滇黄芩茎叶乙醇提取物及其不同溶剂萃取部位的抗氧化和降脂活性研究[J].中国药房,2021,32(2):220-225. [4]刁红梅,吴秀蓉,肖朝江,等.三种滇西地区药用黄芩属植物与正品黄芩抗菌活性研究[J].中国民族民间医药,2020,29(12):37-41.[5]谷文超,陈聪,宋咏梅,等.网络药理学在中医复方研究中的应用现状[J].山东中医杂志,2021,40(6):662-667.[6]张改君,苗静,郭丽颖,等.多组学联用在中药作用机制研究中的应用[J].中草药,2021,52(10):3112-3120.[7]董庆海,刘慧,刘俊丽,等.基于UPLC-Q/TOF MS及网络药理学的丹参川芎嗪注射液抗血瘀活性成分和机制研究[J].质谱学报,2021,42(1):24-35.[8]刘畅,刘雄伟,丁晶鑫,等.基于UPLC-Q-TOF-MS结合网络药理学的黄褐毛忍冬保肝活性成分及其潜在靶点研究[J].江苏大学学报(医学版),2021,31(1):73-82.[9]李泽运,曹星,袁永亮,等.排毒清脂片的UPLC-Q-TOF-MS成分分析及网络药理学探索[J].中国实验方剂学杂志,2020,26(7):129-134.[10]姚姗姗,刘静茹,陈静,等.基于网络药理学探究中药黄连抗菌作用机制[J].中国畜牧兽医,2020,47(5):1593-1601.[11]Hariri BM,McMahon DB,Chen B,et al. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa[J].PLoS One,2017,12(9):e0185203.[12]Yao J,Pan D,Zhao Y,et al.Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway[J].Immunology,2014,143(2):241-257.[13]张新娟,左国营,张云玲,等.芹菜素联合抗生素的抗耐甲氧西林金黄色葡萄球菌作用[J].中国医院药学杂志,2012,32(10):755-758.[14]张洺嘉,谢明杰.黄芩素抑制金黄色葡萄球菌生物被膜的形成[J].中国生物化学与分子生物学报,2018,34(3):334-340.[15]许鹏飞,陈渊锦,王丽苹,等.黄芩素有效抑制小鼠肺炎球菌性肺炎感染引起的炎症[J].药物生物技术,2021,28(4):336-341.[16]张鹏葛,王一瑞,刘纪杉,等.中医药治疗布鲁氏菌病的用药规律及药物作用机制分析[J].山东医药,2021,61(20):30-35.[17]Ferraz MA,Zabaglia LM,Pereira WN,et al.Downregulated expression of E-cadherin and TP53 in patients with gastric diseases: the involvement of H. pylori infection and its virulence markers[J].J Gastrointest Cancer,2016,47(1):20-26.[18]Shimizu T,Marusawa H,Matsumoto Y,et al.Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection[J].Gastroenterology,2014,147(2):407-417.[19]Li R,Tan S,Yu M,et al.Annexin A2 regulates autophagy in Pseudomonas aeruginosa infection through the Akt1-mTOR-ULK1/2 signaling pathway[J].J Immunol,2015,195(8):3901-3911.[20]Montfort A,Colacios C,Levade T,et al.The TNF paradox in cancer progression and immunotherapy[J].Front Immunol,2019,10:1818.[21]Li Q,Xie Y,Cui Z,et al.Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis[J].Tuberculosis,2021,126:102044.

相似文献/References:

[1]符冉冉,符方妹,黄寒梅,等.甲氧西林耐药表皮葡萄球菌的多重耐药表型分析及抗菌中药筛选[J].医学信息,2022,35(03):60.[doi:10.3969/j.issn.1006-1959.2022.03.015]
 FU Ran-ran,FU Fang-mei,HUANG Han-mei,et al.Multi-drug Resistance Phenotype Analysis of Methicillin Resistant Staphylococcus Epidermidisand Screening of Antibacterial Chinese Medicine[J].Journal of Medical Information,2022,35(23):60.[doi:10.3969/j.issn.1006-1959.2022.03.015]

更新日期/Last Update: 1900-01-01