[1]石春蓉,余良主.基于GEO数据库分析心脏重塑中的焦亡相关核心基因及潜在治疗药物[J].医学信息,2024,37(05):12-19.[doi:10.3969/j.issn.1006-1959.2024.05.002]
 SHI Chun-rong,YU Liang-zhu.Identification of Pyroptosis-related Hub Genes and Potential Therapeutic Drugs in Cardiac Remodeling Based on GEO Database[J].Journal of Medical Information,2024,37(05):12-19.[doi:10.3969/j.issn.1006-1959.2024.05.002]
点击复制

基于GEO数据库分析心脏重塑中的焦亡相关核心基因及潜在治疗药物()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
37卷
期数:
2024年05期
页码:
12-19
栏目:
生物信息学
出版日期:
2024-03-01

文章信息/Info

Title:
Identification of Pyroptosis-related Hub Genes and Potential Therapeutic Drugs in Cardiac Remodeling Based on GEO Database
文章编号:
1006-1959(2024)05-0012-08
作者:
石春蓉余良主
(湖北科技学院图书馆1,医学部基础医学院2,湖北 咸宁 437100)
Author(s):
SHI Chun-rongYU Liang-zhu
(Library1,School of Basic Medical Sciences2,Hubei University of Science and Technology,Xianning 437100,Hubei,China)
关键词:
细胞焦亡心脏重塑核心基因尼美舒利
Keywords:
Cell pyroptosisCardiac remodelingHub genesNimesulli
分类号:
R541
DOI:
10.3969/j.issn.1006-1959.2024.05.002
文献标志码:
A
摘要:
目的 从细胞焦亡角度利用生物信息学方法挖掘心脏重塑相关的核心基因,分析其功能,预测可能的治疗药物,为心脏重塑的诊断与治疗提供理论依据。方法 从美国国立医学图书馆基因表达数据库GEO中下载心脏重塑相关基因芯片数据集,利用GEO2R在线分析工具鉴定心脏重塑相关差异表达基因(DEGs)。在GeneCards数据库收集细胞焦亡相关基因,将细胞焦亡相关基因与上述DEGs的交集基因构建蛋白互作网络,鉴定其中的核心基因。利用Metascape2.0对交集基因进行GO及KEGG功能富集分析。最后利用DGIdb数据库预测潜在药物与上述核心基因的相互作用。结果 在GEO数据库筛选出GSE24489数据集,利用GEO2R分析工具鉴定出1767个心脏重塑相关DEGs,与GeneCards数据库中的细胞焦亡相关基因进行交联,得到45个细胞焦亡相关的心脏重塑DEGs。这些DEGs的GO分析生物过程主要富集在防御反应的调节、蛋白裂解的调节、炎症反应等。KEGG通路富集分析显示细胞焦亡相关DEGs主要富集于阿尔茨海默病、癌症通路、丙型肝炎、PI3K-Akt信号途径等。从45个DEGs中鉴定出7个心脏重塑相关核心基因(TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67)。DGIdb数据库预测潜在药物与核心基因相互作用的结果显示,尼美舒利(Nimesulide)、塞来昔布(Celecoxib)、GSK3β抑制剂Tideglusib等药物可能成为治疗心脏重塑的关键候选药物。结论 核心基因PTGS2等在心脏重塑的发生发展中具有重要作用,靶向调节这些核心基因可抑制心脏重塑的发生。
Abstract:
Objective To explore the the pyroptosis-related hub genes in cardiac remodeling by bioinformatics methods from the perspective of pyroptosis, analyze their functions, predict possible therapeutic drugs, and provide theoretical basis for the diagnosis and treatment of cardiac remodeling.Methods The gene chip data set related to cardiac remodeling was downloaded from the Gene Expression Omnibus (GEO) database of the National Library of Medicine in the United States, and the differentially expressed genes (DEGs) related to cardiac remodeling were identified by GEO2R online analysis tool. The pyroptosis-related genes were collected in the GeneCards database, and the protein interaction network was constructed between the pyroptosis-related genes and the intersection genes of the above DEGs to identify the core genes. Metascape2.0 was used to perform GO and KEGG functional enrichment analysis on the intersection genes. Finally, the DGIdb database was used to predict the interaction between potential drugs and the above core genes.Results The dataset GSE24489 was screened out from the GEO database as a cardiac remodeling-related dataset, and 1767 cardiac remodeling-related DEGs were screened out from GSE24489 and intersected with the pyroptosis-related genes from the GeneCards database to obtain 45 pyroptosis-related DEGs in cardiac remodeling. GO analysis of these DEGs showed that biological processes were mainly enriched in the regulation of defense response, regulation of protein cleavage, inflammatory response, etc. KEGG pathway enrichment analysis showed that DEGs related to pyroptosis were mainly enriched in Alzheimer’s disease, cancer pathway, hepatitis C, PI3K-Akt signaling pathway and so on. Nine cardiac remodeling-related hub DEGs (TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67) were identified from these pyroptosis-related DEGs. The results of the DGIdb database predicting the interaction between potential drugs and hub genes showed that drugs such as Nimesulide, Celecoxib, and GSK3β inhibitor Tideglusib might become key candidates for the treatment of cardiac remodeling.Conclusion These identified hub genes such as PTGS2 may play an important role in the occurrence and development of cardiac remodeling and represent new therapeutic targets for the treatment of heart remodeling.

参考文献/References:

[1]Anilkumar N,Sirker A,Shah AM.Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure[J].Front Biosci (Landmark Ed),2009,14:3168-3187.[2]Flores-Vergara R,Olmedo I,Aranguiz P,et al.Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-beta, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules[J].Front Physiol,2021,12:716721.[3]Fang L,Murphy AJ,Dart AM.A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease[J].Front Pharmacol,2017,8:186.[4]中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告2021概要[J].中国循环杂志,2022,36:553-578.[5]Ohto U.Activation and regulation mechanisms of NOD-like receptors based on structural biology[J].Front Immunol,2022,13:953530.[6]Bai Y,Sun X,Chu Q,et al.Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1beta[J].Biosci Rep,2018,38:BSR20171438.[7]Gan W,Ren J,Li T,et al.The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation[J].Biochim Biophys Acta Mol Basis Dis,2018,1864:1-10.[8]Saeidian AH,Youssefian L,Vahidnezhad H,et al.Research Techniques Made Simple: Whole-Transcriptome Sequencing by RNA-Seq for Diagnosis of Monogenic Disorders[J].J Invest Dermatol,2020,140:1117-1126.e1. [9]Costa Ade F,Franco OL.Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions[J].J Cell Physiol,2015,230:959-968.[10]Martins D,Garcia LR,Queiroz DaR,et al.Oxidative Stress as a Therapeutic Target of Cardiac Remodeling[J].Antioxidants (Basel),2022,11:2371.[11]Burchfield JS,Xie M,Hill JA.Pathological ventricular remodeling: mechanisms: part 1 of 2 [J].Circulation,2013,128:388-400.[12]Chen Y,Zeng M,Zhang Y,et al.Nlrp3 Deficiency Alleviates Angiotensin II-Induced Cardiomyopathy by Inhibiting Mitochondrial Dysfunction[J].Oxid Med Cell Longev,2021,2021:6679100.[13]Wang J,Deng B,Liu Q,et al.Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J].Cell Death Dis,2020,11:574.[14]Zhang M,Lei YS,Meng XW,et al.Iguratimod Alleviates Myocardial Ischemia/Reperfusion Injury Through Inhibiting Inflammatory Response Induced by Cardiac Fibroblast Pyroptosis via COX2/NLRP3 Signaling Pathway[J].Front Cell Dev Biol,2021,9:746317.[15]Zhang W,Xu X,Kao R,et al.Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation[J].PLoS One,2014,9:e107639.[16]Lv SL,Zeng ZF,Gan WQ,et al.Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation[J].Acta Pharmacol Sin,2021,42:2016-2032.[17]Gao R,Shi H,Chang S,et al.The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction [J].Int Immunopharmacol,2019,74:105575.[18]Zhang Y,Huang Z,Li H.Insights into innate immune signalling in controlling cardiac remodelling[J].Cardiovasc Res,2017,113:1538-1550.[19]Zhang Y,Qian H,Wu B,et al.E3 Ubiquitin ligase NEDD4 family-regulatory network in cardiovascular disease[J].Int J Biol Sci,2020,16:2727-2740.[20]Walkowski B,Kleibert M,Majka M,et al.Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart[J].Cells,2022,11(9):1553.[21]Lu C,Ren D,Wang X,et al.Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury[J].Biochim Biophys Acta,2014,1842:22-31.[22]Tang X,Pan L,Zhao S,et al.SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation [J].Circulation,2020,141:984-1000.[23]Li H,Gao S,Ye J,et al.COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3[J].Mol Cell Endocrinol,2014,382:998-1006.[24]Zhang L,Deng M,Lu A,et al.Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism[J].J Cell Mol Med,2019,23:8139-8150.[25]Menon B,Krishnamurthy P,Kaverina E,et al.Expression of the cytoplasmic domain of beta1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial death pathway[J].Basic Res Cardiol,2006,101:485-493.[26]Guo Y,Gupte M,Umbarkar P,et al.Entanglement of GSK-3beta, beta-catenin and TGF-beta1 signaling network to regulate myocardial fibrosis[J].J Mol Cell Cardiol,2017,110:109-120.[27]Bajgelman MC,Dos Santos L,Silva GJJ,et al.Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53[J].Virology,2015,476:106-114.[28]Wang SH,Cui LG,Su XL,et al.GSK-3beta-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts[J].Eur J Pharmacol,2022,920:174830.[29]Park BM,Gao S,Cha SA,et al.Attenuation of renovascular hypertension by cyclooxygenase-2 inhibitor partly through ANP release[J].Peptides,2015,69:1-8.[30]Zhao Y,Zheng Q,Gao H,et al.Celecoxib alleviates pathological cardiac hypertrophy and fibrosis via M1-like macrophage infiltration in neonatal mice[J].iScience,2021,24:102233.[31]Baruah J,Hitzman R,Zhang J,et al.The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model[J].J Biol Chem,2017,292:20785-20798.

相似文献/References:

[1]黄光明,赵兴昌,符显昭.水中运动联合中药内治对糖尿病大鼠心肌细胞凋亡和心功能的影响[J].医学信息,2022,35(11):72.[doi:10.3969/j.issn.1006-1959.2022.11.020]
 HUANG Guang-ming,ZHAO Xing-chang,FU Xian-zhao.Effects of Aquatic Therapeutic Exercise Combined with Traditional Chinese Medicine Internal Treatment on Cardiomyocyte Apoptosis and Cardiac Function in Diabetic Rats[J].Journal of Medical Information,2022,35(05):72.[doi:10.3969/j.issn.1006-1959.2022.11.020]
[2]毛 伟,张 琳,刘清钊.肾透明细胞癌细胞焦亡相关基因预后模型的建立与应用[J].医学信息,2022,35(14):1.[doi:10.3969/j.issn.1006-1959.2022.14.001]
 MAO Wei,ZHANG Lin,LIU Qing-zhao.Constructionand Application of Pyroptosis-related Genes Prognosis Model in Clear Cell Renal Cell Carcinoma[J].Journal of Medical Information,2022,35(05):1.[doi:10.3969/j.issn.1006-1959.2022.14.001]
[3]姜晓红,黄玉钾,谷梦霞.细胞焦亡与支气管哮喘关系的研究[J].医学信息,2022,35(22):165.[doi:10.3969/j.issn.1006-1959.2022.22.041]
 JIANG Xiao-hong,HUANG Yu-jia,GU Meng-xia.Study on the Relationship Between Pyroptosis and Bronchial Asthma[J].Journal of Medical Information,2022,35(05):165.[doi:10.3969/j.issn.1006-1959.2022.22.041]
[4]阳华妹.程序性死亡通路在胆红素脑病机制中的研究[J].医学信息,2021,34(10):43.[doi:10.3969/j.issn.1006-1959.2021.10.012]
 YANG Hua-mei.The Study of Programmed Death Pathway in the Mechanism of Bilirubin Encephalopathy[J].Journal of Medical Information,2021,34(05):43.[doi:10.3969/j.issn.1006-1959.2021.10.012]
[5]王 锐,付 萍.细胞焦亡的发生机制研究[J].医学信息,2021,34(11):43.[doi:10.3969/j.issn.1006-1959.2021.11.013]
 WANG Rui,FU Ping.Study on the Mechanism of Pyroptosis[J].Journal of Medical Information,2021,34(05):43.[doi:10.3969/j.issn.1006-1959.2021.11.013]
[6]杨 倩,叶 琨.细胞焦亡在肾脏疾病中的作用[J].医学信息,2023,36(21):178.[doi:10.3969/j.issn.1006-1959.2023.21.042]
 YANG Qian,YE Kun.Role of Pyroptosis in Renal Diseases[J].Journal of Medical Information,2023,36(05):178.[doi:10.3969/j.issn.1006-1959.2023.21.042]

更新日期/Last Update: 1900-01-01