[1]臧莎莎,赵 晴,肖 暖.糖尿病肾病病理机制及其与葡萄糖目标范围内时间的关系研究[J].医学信息,2024,37(13):185-188.[doi:10.3969/j.issn.1006-1959.2024.13.040]
 Study on the Pathological Mechanism of Diabetic Nephropathy and its Relationship with the Time in Target Glucose Range.Study on the Pathological Mechanism of Diabetic Nephropathy and its Relationship with the Time in Target Glucose Range[J].Journal of Medical Information,2024,37(13):185-188.[doi:10.3969/j.issn.1006-1959.2024.13.040]





Study on the Pathological Mechanism of Diabetic Nephropathy and its Relationship with the Time in Target Glucose Range
臧莎莎赵 晴肖 暖
(河北大学附属医院老年医学科,河北 保定 071000)
Study on the Pathological Mechanism of Diabetic Nephropathy and its Relationship with the Time in Target Glucose Range
(Department of Geratology,the Affiliated Hospital of Hebei University School of Medicine,Baoding 071000,Hebei,China)
Time in rangeDiabetes complicationsDiabetic nephropathy
With the increasing incidence of diabetes, the incidence of diabetic kidney disease (DKD) is also increasing year by year. The incidence of end-stage renal disease caused by diabetes has exceeded that caused by glomerulonephritis, which is the primary cause of end-stage renal disease. Therefore, long-term comprehensive management and treatment of patients with diabetic nephropathy is particularly important, and blood glucose monitoring is an important part of its management. The Clinical Guidelines for Prevention and Treatment of Type 2 Diabetes Mellitus in the Elderly in China (2020 edition) recommends the indicator of time in range (TIR) as an important means of blood glucose monitoring and management in diabetes mellitus patients. TIR also plays an important role in the management of blood glucose in patients with diabetic nephropathy. This article reviews the background of TIR, the diagnosis and pathological mechanism of diabetic nephropathy, and the relationship between TIR and diabetic nephropathy.


[1]姚路红,张军.SGLT2抑制剂在老年糖尿病人群中应用的相关研究[J].中国循证心血管医学杂志,2012,13(7):895-896.[2]李洪梅,朱海清.中国糖尿病肾脏病防治指南(2021年版)解读[J].中国医刊,2022,57(2):133-138.[3]Bonner R,Albajrami O,Hudspeth J,et al.Diabetic Kidney Disease[J].Prim Care,2020,47(4):645-659.[4]Prandi FR,Barone L,Lecis D,et al.Biomolecular Mechanisms of Cardiorenal Protection with Sodium-Glucose Co-Transporter 2 Inhibitors[J].Biomolecules,2022,12(10):1349.[5]Erraez S,López-Mesa M,Gómez-Fernández P.Mineralcorticoid receptor blockers in chronic kidney disease[J].Nefrologia (Engl Ed).2021,41(3):258-275.[6]曹晔,杨丹,苏津,等.糖尿病肾病患者肾素-血管紧张素-醛固酮系统与血流动力学的关系[J].临床检验杂志,2012,12(22):1004-1005.[7]]Lin YC,Chang YH,Yang SY,et al.Update of pathophysiology and management of diabetic kidney disease[J].J Formos Med Assoc,2018,117(8):662-675.[8]Greco EV,Russo G,Giandalia A,et al.GLP-1 Receptor Agonists and Kidney Protection[J].Medicina (Kaunas),2019,55(6):233.[9]Tan C,Gu J,Li T,et al.Inhibition of aerobic glycolysis alleviates sepsis induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK regulated autophagy[J].Int J Mol Med,2021,47(3):19.[10]Jigheh ZA,Haghjo AG,Argani H,et al.Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis[J].Iran J Basic Med Sci,2019,22(4):384-390.[11]Pichler R,Afkarian M,Dieter BP,et al.Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets[J].Am J Physiol Renal Physiol,2017,312(4):F716-F731.[12]Li X,Lu L,Hou W,et al.Epigenetics in the pathogenesis of diabetic nephropathy[J].Acta Biochim Biophys Sin (Shanghai),2022,54(2):163-172.[13]Lu Q,Zhou Y,Hao M,et al.The mTOR promotes oxidative stress- induced apoptosis of mesangial cells in diabetic nephropathy[J].Mol Cell Endocrinol,2018,473:31-43.[14]Barati MT,Merchant ML,Kain AB,et al.Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product metabolism in glomeruli of db/db diabetic mice[J].Am J Physiol Renal Physiol,2007,293:F1157–F1165.[15]吕玲.葡萄糖目标范围内时间与2型糖尿病肾脏疾病的相关性研究[D].长春:吉林大学,2022.[16]Tuttle KR,Agarwal R,Alpers CE,et al.Molecular mechanisms and therapeutic targets for diabetic kidney disease[J].Kidney Int,2022,102(2):248-260.[17]Koch EAT,Nakhoul R,Nakhoul F,et al.Autophagy in diabetic nephropathy: a review[J].Int Urol Nephrol,2020,52(9):1705-1712.[18]Bermejo S,García CO,Rodríguez E,et al.The renin-angiotensin-aldosterone system blockade in patients with advanced diabetic kidney disease[J].Nefrologia (Engl Ed),2018,38(2):197-206.[19]莫一菲,包玉倩.《中国血糖监测临床应用指南(2021年版)》解读[J].中华糖尿病杂志,2021,13(10):926-929.[20]Advani A.Positioning time in range in diabetes management[J].Diabetologia,2020,63(2):242-252.[21]Beck RW,Bergenstal RM,Cheng P,et al.The Relationships Between Time in Range,Hyperglycemia Metrics,and HbA1c[J].J Diabetes Sci Technol,2019,13(4):614-626.[22]Kalra S,Shaikh S,Priya G,et al.Correction to: Individualizing Time-in-Range Goals in Management of Diabetes Mellitus and Role of Insulin: Clinical Insights From a Multinational Panel[J].Diabetes Ther,2021,12(9):2627-2629.[23]Runge AS,Kennedy L,Brown AS,et al.Does Time-in-Range Matter Perspectives From People With Diabetes on the Success of Current Therapies and the Drivers of Improved Outcomes[J].Clin Diabetes,2018,36(2):112-119.[24]Vigersky RA,McMahon C.The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes[J].Diabetes Technol Ther,2019,21(2):81-85.[25]陆菊明.葡萄糖目标范围内时间:从指南角度看血糖达标[J].药品评价,2021,18(9):513-515.[26]Barrera-Chimal J,Jaisser F.Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets[J].Diabetes Obes Metab,2020,22 Suppl 1:16-31. [27]Beck RW,Bergenstal RM,Riddlesworth TD,et al.Validation of time in range as an outcome measure for diabetes clinical trials[J].Diabetes Care,2019,42(3):400-405.[28]Yoo JH,Choi MS,Ahn J,et al.Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes[J].Diabetes Technol Ther,2020,22(10):768-776.[29]Lu J,Ma X,Zhou J,et al.Association of Time in Range,as Assessed by Continuous Glucose Monitoring,With Diabetic Retinopathy in Type 2 Diabetes[J].Diabetes Care,2018,41(11):2370-2376.[30]Sheng X,Xiong GH,Yu PF,et al.The Correlation between Time in Range and Diabetic Microvascular Complications Utilizing Information Management Platform[J].Int J Endocrinol,2020,2020:8879085.


 LONG Dan-feng,XU Zhi-wei,WANG Xiao-fang,et al.Epidemiological Investigation and Risk Factors of Type 2 Diabetes Complications[J].Journal of Medical Information,2020,33(13):128.[doi:10.3969/j.issn.1006-1959.2020.21.039]
 TIAN Pan-pan,ZHANG Hui-li.Research Overview of Blood Glucose Fluctuation[J].Journal of Medical Information,2020,33(13):34.[doi:10.3969/j.issn.1006-1959.2020.20.010]
[3]于芳宁,张 宁.基于CiteSpace的近十年我国针灸治疗糖尿病相关研究的文献可视化分析[J].医学信息,2022,35(05):11.[doi:10.3969/j.issn.1006-1959.2022.05.003]
 YU Fang-ning,ZHANG Ning.Visualized Analysis of Domestic Research Hotspot and Trend of Acupuncture and Moxibustion Treatment of Diabetes Mellitus in Recent Ten Years Based on CiteSpace[J].Journal of Medical Information,2022,35(13):11.[doi:10.3969/j.issn.1006-1959.2022.05.003]
 CAI Pei-shan,CHEN Yu-hua,LIN Ming-xu.Research Status of Time in Range in Chronic Complications of Type 2 Diabetes Mellitus[J].Journal of Medical Information,2023,36(13):175.[doi:10.3969/j.issn.1006-1959.2023.18.036]

更新日期/Last Update: 1900-01-01