[1]Âí ºÆ,´÷¹úÁÕ,ÁõÐÂÒ£,µÈ.ҽѧ֪ʶͼÆ××Ô¶¯¹¹½¨Ñо¿[J].ҽѧÐÅÏ¢,2022,35(04):10-12,29.[doi:10.3969/j.issn.1006-1959.2022.04.003]
¡¡MA Hao,DAI Guo-lin,LIU Xin-yao,et al.Automatic Construction of Medical Knowledge Graph[J].Medical Information,2022,35(04):10-12,29.[doi:10.3969/j.issn.1006-1959.2022.04.003]
µã»÷¸´ÖÆ

ҽѧ֪ʶͼÆ××Ô¶¯¹¹½¨Ñо¿()
·ÖÏíµ½£º

ҽѧÐÅÏ¢[ISSN:1006-1959/CN:61-1278/R]

¾í:
35¾í
ÆÚÊý:
2022Äê04ÆÚ
Ò³Âë:
10-12,29
À¸Ä¿:
³ö°æÈÕÆÚ:
2022-02-15

ÎÄÕÂÐÅÏ¢/Info

Title:
Automatic Construction of Medical Knowledge Graph
ÎÄÕ±àºÅ:
1006-1959£¨2022£©04-0010-04
×÷Õß:
Âí ºÆ´÷¹úÁÕÁõÐÂÒ£ÍòÑÞÀö
Öйúҽѧ¿ÆÑ§ÔºÒ½Ñ§ÐÅÏ¢Ñо¿Ëù£¬±±¾© 100020
Author(s):
MA HaoDAI Guo-linLIU Xin-yaoWAN Yan-li
Institute of Medical Information,Chinese Academy of Medical Sciences,Beijing 100020,China
¹Ø¼ü´Ê:
ҽѧ֪ʶͼÆ××Ô¶¯¹¹½¨¼¼Êõ×ÔÈ»ÓïÑÔ´¦Àí
Keywords:
Medical knowledge graphAutomatic construction techniquesNatural language processing
·ÖÀàºÅ:
TP18
DOI:
10.3969/j.issn.1006-1959.2022.04.003
ÎÄÏ×±êÖ¾Âë:
B
ÕªÒª:
Ëæ×ÅÎÒ¹úÒ½ÁÆÐÅÏ¢»¯Ë®Æ½µÄ·¢Õ¹£¬´óÁ¿Ò½ÁÆÊý¾ÝѸËÙ²úÉú£¬¶ÔÈç´Ë·á¸»µÄҽѧ֪ʶ½øÐÐÓÐЧÀûÓÃÏÔµÃÓÈÎªÖØÒª¡£Ò½Ñ§ÖªÊ¶Í¼Æ×ÌṩÁ˶Ôҽѧ֪ʶ½øÐкÏÀí×éÖ¯¡¢¹ÜÀíºÍÀûÓõÄÊֶΡ£±¾ÎÄÊ×ÏȽéÉÜÁË֪ʶͼÆ×µÄ¶¨Òå¼°¼Ü¹¹£¬Ö®ºó´ÓʵÌå³éÈ¡¡¢¹ØÏµ³éÈ¡ºÍʵÌå¶ÔÆëÈý¸ö·½ÃæÊáÀíÁËҽѧ֪ʶͼÆ××Ô¶¯¹¹½¨¹ý³ÌµÄ³£Óü¼Êõ£¬·ÖÎöÁ˸ÃÁìÓòµÄÑо¿ÏÖ×´¼°×îм¼Êõ½øÕ¹£¬×ܽáÁËҽѧ֪ʶͼÆ×ÔÚÒ½ÁÆÓïÒåËÑË÷ÒýÇæ¡¢Ò½ÁÆÎÊ´ðϵͳ¼°Ò½Áƾö²ßÖ§³Öϵͳ·½ÃæµÄÓ¦ÓÃÏÖ×´£¬²¢·ÖÎöÁËҽѧ֪ʶͼÆ××Ô¶¯¹¹½¨¼°Ó¦Ó÷½ÃæÃæÁÙµÄÌôÕ½£¬Ö¼ÔÚΪҽѧ֪ʶͼÆ×µÄ¹¹½¨¼°Ó¦ÓÃÌṩ½è¼ø¡£
Abstract:
With the development of our country¡¯s medical informatization level, a large amount of medical data has been rapidly generated, and it is particularly important to effectively use such a wealth of medical knowledge. The medical knowledge graph provides a means to organize, manage and utilize medical knowledge. This article first introduces the definition and architecture of the knowledge graph, and then introduces the common techniques in the medical knowledge graph automatic construction steps including entity extraction, relationship extraction and entity alignment. The research status of knowledge graph automatic construction techniques is summarized, and the latest research progress is analyzed. Finally, the application status of medical knowledge graph in medical semantic search engines, medical question answering systems and medical decision support systems are introduced, the challenges faced in the automatic construction techniques and applications of medical knowledge graph are analyzed, in order to provides a reference for the construction and application of medical knowledge graph.

²Î¿¼ÎÄÏ×/References:

[1]Wikipedia.Knowledge graph[EB/OL].https://en.wikipedia.org/wiki/Knowledge_Graph,2021-05-09/2021-08-25.[2]°ÂµÂÂê,ÑîÔÆ·É,ËëÖ¾·½,µÈ.ÖÐÎÄҽѧ֪ʶͼÆ×CMeKG¹¹½¨³õ̽[J].ÖÐÎÄÐÅϢѧ±¨,2019,33(10):1-9.[3]ÈîÍ®,Ëï³ÌÁÕ,Íõê»·Ü,µÈ.ÖÐҽҩ֪ʶͼÆ×¹¹½¨ÓëÓ¦ÓÃ[J].ҽѧÐÅϢѧÔÓÖ¾,2016,37(4):8-13.[4]ÓÚÍ®,Àî¾´»ª,ÖìÁá,µÈ.ÖÐÒ½ÁÙ´²ÖªÊ¶Í¼Æ×µÄ¹¹½¨ÓëÓ¦ÓÃ[J].¿Æ¼¼ÐÂʱ´ú,2017(4):51-54.[5]ÓÚÍ®,Àî¾´»ª,ÓÚçù,µÈ.ÖÐÒ½ÑøÉú֪ʶͼÆ×µÄ¹¹½¨ÓëÓ¦ÓÃ[J].ÖйúÊý×Öҽѧ,2017,12(12):64-66.[6]Grishman R.Message understanding conference-6: a brief history[C]//Proceedings of the 16th conference on Computational linguistics.Copenhagen:ACL,1996:466-471.[7]Isozaki H,Kazawa H.Efficient support vector classifiers for named entity recognition[C]//Proceedings of the 19th international conference on Computational linguistics.Taipei:COLING,2002:1-7.[8]Mccallum A,Li W.Early results for named entity recognition with conditional random fields, feature induction and Web-Enhanced lexicons[J].Computer Science Department Faculty Publication Series,2003(4):188-191.[9]Huang ZH,Xu W,Yu K.Bidirectional LSTM-CRF models for sequence tagging[EB/OL].http://arxiv.org/abs/1508.01991,2015-08-09/2021-08-25.[10]ÔøÇàϼ,ÐÜÍúƽ,¶Å½¨Ç¿,µÈ.½áºÏ×Ô×¢ÒâÁ¦µÄBiLSTM-CRFµÄµç×Ó²¡ÀúÃüÃûʵÌåʶ±ð[J].¼ÆËã»úÓ¦ÓÃÓëÈí¼þ,2021,38(3):159-162,242.[11]³ÂÃÀɼ,Ïij¿êØ.¸Î°©»¼ÕßÔÚÏßÌáÎʵÄÃüÃûʵÌåʶ±ðÑо¿:Ò»ÖÖ»ùÓÚÇ¨ÒÆÑ§Ï°µÄ·½·¨[J].Êý¾Ý·ÖÎöÓë֪ʶ·¢ÏÖ,2019,3(12):61-69.[12]Chinchor N,Marsch E.MUC-7 Information Extraction Task Definition[C]//Proceedings of a Seventh Message Understanding Conference (MUC-7).Fairfax:ACL,1998.[13]ÕÅÖ¾²ý,Öܶ±,ÕÅÈð·¼,µÈ.ÈÚºÏË«ÏòGRUÓë×¢ÒâÁ¦»úÖÆµÄÒ½ÁÆÊµÌå¹ØÏµÊ¶±ð[J].¼ÆËã»ú¹¤³Ì,2020,46(6):296-302.[14]¶¡Áú.ÃæÏòµç×Ó²¡ÀúµÄÐÅÏ¢³éÈ¡¼¼ÊõÑо¿[D].ºâÑô:ÄÏ»ª´óѧ,2020.[15]ÀîÇàÇà,ÑîÖ¾ºÀ,ÂÞÁè,µÈ.»ùÓÚ¶àÈÎÎñѧϰµÄÉúÎïҽѧʵÌå¹ØÏµ³éÈ¡[J].ÖÐÎÄÐÅϢѧ±¨,2019,33(8):84-92.[16]ÄÁÑî×Ó.»ùÓÚ°ë¼à¶½Ñ§Ï°µÄÖÐÎĵç×Ó²¡ÀúʵÌåʶ±ðºÍʵÌå¹ØÏµ³éÈ¡Ñо¿[D].º£¿Ú:º£ÄÏ´óѧ,2018.[17]ÂÞÁè.ÉúÎïҽѧÎı¾ÍÚ¾òÈô¸É¹Ø¼ü¼¼ÊõÑо¿[D].´óÁ¬:´óÁ¬Àí¹¤´óѧ,2019.[18]Öܶ±.ÃæÏòÖÐÎĵç×Ó²¡ÀúµÄÒ½ÁÆÊµÌå¼°¹ØÏµÊ¶±ð¼¼ÊõÑо¿[D].À¼ÖÝ:Î÷±±Ê¦·¶´óѧ,2020.[19]Ìュΰ,Àî¿¡·æ,ÁøÇà.½áºÏÊôÐԽṹµÄͼ¾í»ýʵÌå¶ÔÆëËã·¨[J].¼ÆËã»úÓ¦ÓÃÑо¿,2021,38(7):1979-1982,1992.[20]Chen MH,Tian YT,Yang MH,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proc of the 26th International Joint Conference on Artificial Intelligence.Melbourne:IJCAI,2017:1511-1517.[21]Wang Z,Lv Q,Lan X,et al.Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks[C]//Proc of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels:ACL,2018:349-357.[22]ËïÙ»ÄÏ.ÃæÏòºôÎü¿ÆÊÒ¼²²¡µÄ֪ʶ³éÈ¡Óë¶ÔÆë[D].¹þ¶û±õ: ¹þ¶û±õ¹¤Òµ´óѧ,2019.[23]ëø·É,ÖÓÎÄ,ÐíÇ¿,µÈ.Ò»ÖÖ»ùÓÚ±íʾѧϰµÄҽѧ֪ʶͼÆ×ʵÌå¶ÔÆë·½·¨:Öйú,CN111309930A[P].2020-09-15.[24]³ÌÈð.ÃæÏòÖÐÎÄÒ½ÁÆÖªÊ¶Í¼Æ×µÄʵÌå¶ÔÆë·½·¨Ñо¿¼°Ó¦ÓÃ[D].±±¾©:±±¾©Óʵç´óѧ,2020.[25]¿µÀò.»ùÓÚ֪ʶͼÆ×µÄÐÄѪ¹Ü²¡ÎÊ´ðϵͳµÄÑо¿ÓëʵÏÖ[D].¹ãÖÝ:»ªÄÏÀí¹¤´óѧ,2020.[26]²ÜÃ÷Óî,ÀîÇàÇà,ÑîÖ¾ºÀ,µÈ.»ùÓÚ֪ʶͼÆ×µÄÔ­·¢ÐԸΰ©ÖªÊ¶ÎÊ´ðϵͳ[J].ÖÐÎÄÐÅϢѧ±¨,2019,33(6):88-93.[27]Gong F,Wang M,Wang HF,et al.SMR: Medical knowledge graph embedding for safe medicine recommendation[EB/OL].https://arxiv.org/abs/1710.05980,2020-11-29/2021-08-25.[28]Ö£ÉÙÓî,ëø·É,ÂíÕ÷,µÈ.Ö§³ÖÁÙ´²¾ö²ßµÄҽѧ֪ʶͼÆ×µÄ¹¹½¨ÓëÓ¦ÓÃ[J].ÖØÇìҽѧ,2021,50(1):163-166.

ÏàËÆÎÄÏ×/References:

[1]Áõ ÓÂ,ÆëÃÎö«.»ùÓÚÌÇÄò²¡·ÀÖεÄҽѧ֪ʶͼÆ×¹¹½¨µÄÑо¿[J].ҽѧÐÅÏ¢,2020,33(18):11.[doi:10.3969/j.issn.1006-1959.2020.18.004]
¡¡LIU Yong,QI Meng-ji.Research on the Construction of Medical Knowledge Graph Based on Diabetes Prevention and Treatment[J].Medical Information,2020,33(04):11.[doi:10.3969/j.issn.1006-1959.2020.18.004]
[2]Àî²ýïÚ,¶ÎÓÀºã,Àî Ýí.ҽѧ֪ʶͼÆ×Ó¦ÓÃÐÂÁìÓòÕ¹Íû[J].ҽѧÐÅÏ¢,2024,37(19):182.[doi:10.3969/j.issn.1006-1959.2024.19.040]
¡¡LI Changbiao,DUAN Yongheng,LI Bei.Prospect of New Application Fields of Medical Knowledge Graph[J].Medical Information,2024,37(04):182.[doi:10.3969/j.issn.1006-1959.2024.19.040]

¸üÐÂÈÕÆÚ/Last Update: 1900-01-01