[1]肖 杨,蒋 振.lncRNA-HMGCS1的靶基因预测及信号通路富集分析[J].医学信息,2022,35(17):7-11.[doi:10.3969/j.issn.1006-1959.2022.17.002]
 XIAO Yang,JIANG Zhen.Target Gene Prediction and Signal Pathway Enrichment Analysis of lncRNA-HMGCS1[J].Journal of Medical Information,2022,35(17):7-11.[doi:10.3969/j.issn.1006-1959.2022.17.002]
点击复制

lncRNA-HMGCS1的靶基因预测及信号通路富集分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年17期
页码:
7-11
栏目:
生物信息学
出版日期:
2022-09-01

文章信息/Info

Title:
Target Gene Prediction and Signal Pathway Enrichment Analysis of lncRNA-HMGCS1
文章编号:
1006-1959(2022)17-0007-05
作者:
肖 杨蒋 振
(川北医学院基础医学与法医学院生物化学与分子生物学教研室,四川 南充 637000)
Author(s):
XIAO YangJIANG Zhen
(Department of Biochemistry and Molecular Biology,School of Basic Medicine and Forensic Medicine,North Sichuan Medical College,Nanchong 637000,Sichuan,China)
关键词:
生物学功能靶基因lncRNA-HMGCS1内质网-高尔基复合体
Keywords:
Biological functionsTarget geneslncRNA-HMGCS1Endoplasmic reticulum-Golgi complex
分类号:
Q343.1
DOI:
10.3969/j.issn.1006-1959.2022.17.002
文献标志码:
A
摘要:
目的 运用生物信息学方法,分析长链非编码RNA-HMGCS1在细胞内的调控靶基因及信号通路,并对其进行生物学功能注释,阐述lncRNA- HMGCS1在细胞内的功能作用。方法 在miRDB数据库和Starbase3.0数据库中分别以lncRNA-HMGCS1作为目标基因,搜索与其结合的所有miRNAs,将2个数据库搜索的结果取交集,得到候选miRNAs。在Starbase3.0数据库中预测miRNAs的靶基因,并在DAVID数据库进行GO功能注释和Pathway通路富集。结果 miRDB数据库预测到95个miRNA与lncRNA-HMGCS1相作用,Starbase3.0数据库预测到167个miRNA与之相作用,选取2个数据库的交集共14个miRNA;GO功能注释显示14个miRNA的靶基因主要分布在转录调控、转录因子结合及细胞双链DNA结合等方面,生物学过程主要分布在细胞内转运,内质网-高尔基复合体物质转运等功能方面,信号通路富集结果主要分布在细胞衰老、细胞节律、细胞长时程增强以及泛素介导的蛋白降解方面。结论 长链非编码RNA-HMGCS1调控的细胞内靶基因及信号通路主要包括内质网-高尔基复合体物质转运、细胞衰老、细胞节律、细胞长时程增强以及泛素介导的蛋白降解等方面,进而调控细胞的生理和病理过程。
Abstract:
Objective To analyze the regulatory target genes and signaling pathways of long non-coding RNA-HMGCS1 in cells by bioinformatics methods, and to annotate its biological function, and to elucidate the function of lncRNA-HMGCS1 in cells.Methods In the miRDB database and the Starbase3.0 database, lncRNA-HMGCS1 was used as the target gene to search for all miRNAs bound to it, and the results of the two database search were intersected to obtain candidate miRNAs. The target genes of miRNAs were predicted in the Starbase3.0 database, and GO function annotation and Pathway pathway enrichment were performed in the DAVID database.Results A total of 95 miRNAs were predicted to interact with lncRNA-HMGCS1 in miRDB database, and 167 miRNAs were predicted to interact with lncRNA-HMGCS1 in Starbase3.0 database. A total of 14 miRNAs were selected from the intersection of the two databases. GO functional annotation showed that the target genes of 14 miRNAs were mainly distributed in transcriptional regulation, transcription factor binding and cell double-stranded DNA binding. Biological processes were mainly distributed in intracellular transport, endoplasmic reticulum-Golgi complex material transport and other functions. Signal pathway enrichment results were mainly distributed in cell senescence, cell rhythm, cell long-term enhancement and ubiquitin-mediated protein degradation.Conclusion The intracellular target genes and signaling pathways regulated by long non-coding RNA-HMGCS1 mainly include endoplasmic reticulum-Golgi complex material transport, cell senescence, cell rhythm, cell long-term potentiation and ubiquitin-mediated protein degradation, thereby regulating the physiological and pathological processes of cells.

参考文献/References:

[1]Zhou C,Li J,Du J,et al.HMGCS1 drives drug-resistance in acute myeloid leukemia through endoplasmic reticulum-UPR-mitochondria axis[J].Biomed Pharmacother,2021,137:111378.[2]Wang IH,Huang TT,Chen JL,et al.Mevalonate Pathway Enzyme HMGCS1 Contributes to Gastric Cancer Progression[J].Cancers (Basel),2020,12(5):1088. [3]Walsh CA,Akrap N,Garre E,et al.The mevalonate precursor enzyme HMGCS1 is a novel marker and key mediator of cancer stem cell enrichment in luminal and basal models of breast cancer[J].PLoS One,2020,15(7):e0236187.[4]Zhang J,Jiang M,Qian L,et al.The STAT3-miR-223-TGFBR3/HMGCS1 axis modulates the progression of cervical carcinoma[J].Mol Oncol,2020,14(9):2313-2331. [5]Berridge MJ.The endoplasmic reticulum: a multifunctional signaling organelle[J].Cell Calcium,2002,32(5-6):235-249.[6]Chen B,Li P,Li L,et al.Putative genes and pathways involved in the acne treatment of isotretinoin via microarray data analyses[J].Biomed Res Int,2020,2020:5842795.[7]Yang Z,Cappello T,Wang L.Emerging role of microRNAs in lipid metabolism[J].Acta Pharm Sin B,2015,5(2):145-150. [8]Zhou S,Xu H,Tang Q,et al.Dipyridamole Enhances the Cytotoxicities of Trametinib against Colon Cancer Cells through Combined Targeting of HMGCS1 and MEK Pathway[J].Mol Cancer Ther,2020,19(1):135-146. [9]Zheng ZG,Zhu ST,Cheng HM,et al.Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway[J].Autophagy,2021,17(7):1592-1613. [10]He J,Zhao H,Liu X,et al.Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome mediated circ HMGCS1 via the miR 34a 5p/SGPP1 axis[J].Oncol Rep,2020,44(6):2429-2442.[11]Hernandez JA,Castro VL,Reyes-Nava N,et al.Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development[J].Blood Adv,2019,3(8):1244-1254. [12]Pandyra AA,Mullen PJ,Goard CA,et al.Penn Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death[J].Oncotarget,2015,6(29):26909-26921.[13]Lyu L,Yang EJ,Head SA,et al.Shim Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth[J].Cancer Lett,2017,409:91-103.[14]Wang IH,Huang TT,Chen JL,et al.Mevalonate pathway enzyme HMGCS1 contributes to gastric cancer progression[J].Cancers (Basel),2020,12(5):1088.[15]Ho WY,Chang JC,Lim K,et al.TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination[J].J Cell Biol,2021,220(9):e201910213.[16]Ying X,Zhu Y,Jin X,et al.Umbilical cord plasma-derived exosomes from preeclamptic women induce vascular dysfunction by targeting HMGCS1 in endothelial cells[J].Placenta,2021,103:86-93. [17]van den Boomen DJH,Sienkiewicz A,Berlin I,et al.A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export[J].Nat Commun,2020,11(1):5559. [18]Fujimoto N,Akiyama M,Satoh Y,et al.Interaction of Gal-7 with HMGCS1 In Vitro May Facilitate Cholesterol Deposition in Cultured Keratinocytes[J].J Invest Dermatol,2022,142(3 Pt A):539-548.[19]Liu Y,Lu LL,Wen D,et al.MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming[J].J Hematol Oncol,2020,13(1):12. [20]Vallejo A,Erice O,Entrialgo-Cadierno R,et al.FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted[J].J Hepatol,2021,75(2):363-376.[21]Zhao S,Cheng L,Shi Y,et al.MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway[J].Cell Death Dis,2021,12(1):18.

相似文献/References:

[1]沈 齐.金属硫蛋白与肿瘤的关系研究[J].医学信息,2019,32(16):51.[doi:10.3969/j.issn.1006-1959.2019.16.016]
 SHEN Qi.Study on the Relationship between Metallothionein and Tumor[J].Journal of Medical Information,2019,32(17):51.[doi:10.3969/j.issn.1006-1959.2019.16.016]
[2]袁晓霞,蒋 振.长链非编码RNA-Keratin 8的调控通路分析[J].医学信息,2022,35(19):6.[doi:10.3969/j.issn.1006-1959.2022.19.002]
 YUAN Xiao-xia,JIANG Zhen.Regulatory Pathway Analysis of Long Non-coding RNA-Keratin 8[J].Journal of Medical Information,2022,35(17):6.[doi:10.3969/j.issn.1006-1959.2022.19.002]
[3]陈真真,蔡 军.osa-miR168a-5p靶向调节人源ADD1及E2F2基因表达的研究[J].医学信息,2020,33(11):64.[doi:10.3969/j.issn.1006-1959.2020.11.020]
 CHEN Zhen-zhen,CAI Jun.Study on osa-miR168a-5p Targeted Regulation of Human ADD1 and E2F2 Gene Expression[J].Journal of Medical Information,2020,33(17):64.[doi:10.3969/j.issn.1006-1959.2020.11.020]
[4]李艳丽,谭仕廉,申元英,等.hsa-miR-221-3p靶基因预测及生物信息学分析[J].医学信息,2022,35(07):59.[doi:10.3969/j.issn.1006-1959.2022.07.015]
 LI Yan-li,TAN Shi-lian,SHEN Yuan-ying,et al.Target Genes Prediction and Bioinformatics Analysis of hsa-miR-221-3p[J].Journal of Medical Information,2022,35(17):59.[doi:10.3969/j.issn.1006-1959.2022.07.015]
[5]姜 瑞,张 征,谭爱华.慢性阻塞性肺疾病与骨质疏松症的生物信息学分析[J].医学信息,2023,36(17):1.[doi:10.3969/j.issn.1006-1959.2023.17.001]
 JIANG Rui,ZHANG Zheng,TAN Ai-hua.Bioinformatics Analysis of Chronic Obstructive Pulmonary Disease and Osteoporosis[J].Journal of Medical Information,2023,36(17):1.[doi:10.3969/j.issn.1006-1959.2023.17.001]

更新日期/Last Update: 1900-01-01