[1]侯晓丽,张亚慧,唐迎乐.人参皂苷Rg3对帕金森病模型大鼠多巴胺能神经元氧化应激的抑制作用[J].医学信息,2023,36(19):88-91.[doi:10.3969/j.issn.1006-1959.2023.19.018]
 HOU Xiao-li,ZHANG Ya-hui,TANG Ying-le.Inhibitory Effect of Ginsenoside Rg3 on Oxidative Stress in Dopaminergic Neurons of Parkinson’s Disease Model Rats[J].Journal of Medical Information,2023,36(19):88-91.[doi:10.3969/j.issn.1006-1959.2023.19.018]
点击复制

人参皂苷Rg3对帕金森病模型大鼠多巴胺能神经元氧化应激的抑制作用()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年19期
页码:
88-91
栏目:
论著
出版日期:
2023-10-01

文章信息/Info

Title:
Inhibitory Effect of Ginsenoside Rg3 on Oxidative Stress in Dopaminergic Neurons of Parkinson’s Disease Model Rats
文章编号:
1006-1959(2023)19-0088-04
作者:
侯晓丽张亚慧唐迎乐
(1.扬州市职业大学医学院,江苏 扬州 225000;2.扬州大学医学院,江苏 扬州 225000)
Author(s):
HOU Xiao-liZHANG Ya-huiTANG Ying-le
(1.Medical School of Yangzhou Polytechnic College,Yangzhou 225000,Jiangsu,China;2.Yangzhou University Medical College,Yangzhou 225000,Jiangsu,China)
关键词:
帕金森病人参皂苷Rg3氧化应激神经保护鱼藤酮
Keywords:
Parkinson’s diseaseGinsenoside Rg3Oxidative stressNeuroprotectionRotenone
分类号:
R742.5
DOI:
10.3969/j.issn.1006-1959.2023.19.018
文献标志码:
A
摘要:
目的 研究人参皂苷Rg3对帕金森病模型大鼠黑质多巴胺能神经元氧化应激的抑制作用,探讨Rg3对多巴胺能神经元保护作用的机制。方法 将24只SD成年雄性大鼠随机分为对照组、PD模型组、Rg3组及阳性药物组,每组6只,分别编号1~6号;造模前3 d开始给药,Rg3组给予6 mg/kg Rg3灌胃,阳性药物组给予11 mg/kg司来吉兰灌胃,对照组及模型组给予6 mg/kg羧甲基纤维素钠灌胃,1次/d,连续31 d;灌胃3 d后,除对照组外的其余3组大鼠均皮下注射鱼藤酮纳米脂质载体(R-NLC),首剂量给予0.5 mg/kg,第2次给予0.8 mg/kg,此后每次1 mg/kg,2 d/次,连续28 d,对照组皮下注射同等剂量空白纳米脂质载体。采用外观行为表现评分考察大鼠外观行为学表现,采用黄嘌呤氧化酶法和二硫代二硝基苯甲酸法测定组织匀浆中SOD、GSH-PX活力,采用硫代巴比妥缩合法测定MDA含量。结果 各组大鼠不同时间点行为学评分比较,差异有统计学意义(P<0.05);与对照组相比,模型组大鼠黑质MDA含量升高、黑质SOD活性及黑质GSH-PX活性降低,差异有统计学意义(P<0.05);与模型组相比,Rg3组及阳性药物组黑质MDA含量降低,黑质SOD活性及黑质GSH-PX活性升高,差异有统计学意义(P<0.05)。结论 Rg3具有抗氧化应激作用,可通过抗氧化应激实现对神经细胞的保护作用。
Abstract:
Objective To study the inhibitory effect of ginsenoside Rg3 on oxidative stress in dopaminergic neurons of Parkinson’s disease model rats, and to explore the mechanism of protective effect of Rg3 on dopaminergic neurons.Methods A total of 24 adult male SD rats were randomly divided into control group, PD model group, Rg3 group and positive drug group, with 6 rats in each group, numbered 1-6, respectively. Three days before modeling, Rg3 group was given 6 mg/kg Rg3 by gavage, positive drug group was given 11 mg/kg selegiline by gavage, control group and model group were given 6 mg/kg sodium carboxymethyl cellulose by gavage, once a day for 31 consecutive days. After 3 days of gavage, rats in the other 3 groups except the control group were injected subcutaneously with rotenone nano lipid carrier (R-NLC), 0.5 mg/kg at the first dose, 0.8 mg/kg at the second dose, and then 1 mg/kg each time, once every 2 days, for consecutive 28 days. The control group was injected subcutaneously with the same dose of blank nano lipid carrier. Appearance and behavior scores were used to investigate the appearance and behavior of rats. Activities of SOD and GSH-PX in tissue homogenate were determined by xanthine oxidase method and dithiobarbitone method, and MDA content was determined by thiobarbitone reduction method.Results There were significant differences in the behavioral scores of rats in each group at different time points (P<0.05). Compared with the control group, the content of MDA in the substantia nigra of the model group increased, the activity of SOD in the substantia nigra and the activity of GSH-PX in the substantia nigra decreased, and the difference was statistically significant (P<0.05). Compared with the model group, the content of MDA in the substantia nigra of the Rg3 group and the positive drug group decreased, the activity of SOD in the substantia nigra and the activity of GSH-PX in the substantia nigra increased, and the difference was statistically significant (P<0.05).Conclusion Rg3 has obvious anti-oxidative stress effect and can protect nerve cells by anti-oxidative stress.

参考文献/References:

[1]肖雪洋,武治印,胡琳珍.帕金森发病机制及其最新治疗策略[J].湖北大学学报(自然科学版),2021,43(5):514-521.[2]Dionísio PA,Amaral JD,Rodrigues CMP.Oxidative stress and regulated cell death in Parkinson’s disease[J].Ageing Res Rev,2021,67:101263.[3]Zhu J,Gao W,Shan X,et al.Apelin-36 mediates neuroprotective effects by regulating oxidative stress,autophagy and apoptosis in MPTP-induced Parkinson’s disease model mice[J].Brain Res,2020,1726:146493.[4]Mahoney-Sánchez L,Bouchaoui H,Ayton S,et al.Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease[J].Prog Neurobiol,2021,196:101890.[5]Peng N,Jin L,He A,et al.Effect of sulphoraphane on newborn mouse cardiomyocytes undergoing ischaemia/reperfusion injury[J].Pharm Biol,2019,57(1):753-759.[6]Zygula A,Kosinski P,Wroczynski P,et al.Oxidative Stress Markers Differ in Two Placental Dysfunction Pathologies: Pregnancy-Induced Hypertension and Intrauterine Growth Restriction[J].Oxid Med Cell Longev,2020,2020:1323891.[7]Zuo X,Zhou J,Li Y,et al.TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS[J].Nat Struct Mol Biol,2021,28(2):132-142.[8]Zhu Y,Liu Y,Yang F,et al.All-Trans Retinoic Acid Exerts Neuroprotective Effects in Amyotrophic Lateral Sclerosis-Like Tg (SOD1*G93A)1Gur Mice[J].Mol Neurobiol,2020,57(8):3603-3615.[9]Zhao A,Liu N,Yao M,et al.A Review of Neuroprotective Effects and Mechanisms of Ginsenosides From Panax Ginseng in Treating Ischemic Stroke[J].Front Pharmacol,2022,13:946752.[10]Zhang R,Chen DY,Luo XW,et al.Comprehensive Analysis of the Effect of 20(R)-Ginsenoside Rg3 on Stroke Recovery in Rats via the Integrative miRNA-mRNA Regulatory Network[J].Molecules,2022,27(5):1573.[11]Zarneshan SN,Fakhri S,Khan H.Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach[J].Pharmacol Res,2022,177:106099.[12]晋亮,葛晓群.人参皂苷Rb3和Rg3对MPP+诱导的PC12细胞损伤作用研究[J].医药导报,2007,26:18-20.[13]Monzio Compagnoni G,Di Fonzo A,Corti S,et al.The Role of Mitochondria in Neurodegenerative Diseases:the Lesson from Alzheimer’s Disease and Parkinson’s Disease[J].Mol Neurobiol,2020,57(7):2959-2980.[14]Zhu L,Sun C,Ren J,et al.Stress-induced precocious aging in PD-patient iPSC-derived NSCs may underlie the pathophysiology of Parkinson’s disease[J].Cell Death Dis,2019,10(2):105.[15]Zhu R,Qi X,Liu C,et al.The silent information regulator 1 pathway attenuates ROS-induced oxidative stress in Alzheimer’s disease[J].J Integr Neurosci,2020,19(2):321-332.[16]Zheng X,Yu S,Xue Y,et al.FBXO22, ubiquitination degradation of PHLPP1, ameliorates rotenone induced neurotoxicity by activating AKT pathway[J].Toxicol Lett,2021,350:1-9.[17]Zhang D,Li S,Hou L,et al.Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model[J].J Neuroinflammation,2021,18(1):4.[18]Ztaou S,Lhost J,Watabe I,et al.Striatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine-depleted mice[J].Eur J Neurosci,2018,48(9):2988-3004.[19]Zhu YL,Sun MF,Jia XB,et al.Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction,α-synuclein expression and oxidative stress[J].Int Immunopharmacol,2019,66:19-27.[20]Finkel T,Holbrook NJ.Oxidants, oxidative stress and the biology of ageing s[J].Nature,2000,408(6809):239-247.

相似文献/References:

[1]王姝,莫英绪,王大成.帕金森病发病因素的研究现状[J].医学信息,2018,31(01):46.[doi:10.3969/j.issn.1006-1959.2018.01.017]
 WANG Shu,MO Ying-xu,WANG Da-cheng.Research Status of the Factors of Parkinson's Disease[J].Journal of Medical Information,2018,31(19):46.[doi:10.3969/j.issn.1006-1959.2018.01.017]
[2]刘 阳,王惠凌,安 迪,等.进行性核上性麻痹1例报告[J].医学信息,2018,31(05):192.[doi:10.3969/j.issn.1006-1959.2018.05.073]
[3]樊 毅.帕金森病嗅觉改变的相关性研究[J].医学信息,2018,31(17):95.[doi:10.3969/j.issn.1006-1959.2018.17.029]
 FAN Yi.Correlation Study of Olfactory Changes in Parkinson's Disease[J].Journal of Medical Information,2018,31(19):95.[doi:10.3969/j.issn.1006-1959.2018.17.029]
[4]陈凤全.帕金森病的诊治现状及进展[J].医学信息,2020,33(12):43.[doi:10.3969/j.issn.1006-1959.2020.12.014]
 CHEN Feng-quan.Status and Progress of Diagnosis and Treatment of Parkinson’s Disease[J].Journal of Medical Information,2020,33(19):43.[doi:10.3969/j.issn.1006-1959.2020.12.014]
[5]邓伟胜,楼云龙,苏中振.正电子发射断层扫描PET/CT在帕金森病患者早期诊断中的应用[J].医学信息,2020,33(18):170.[doi:10.3969/j.issn.1006-1959.2020.18.057]
 DENG Wei-sheng,LOU Yun-long,SU Zhong-zhen.Application of Positron Emission Tomography PET/CT in Early Diagnosis of Parkinson’s Disease[J].Journal of Medical Information,2020,33(19):170.[doi:10.3969/j.issn.1006-1959.2020.18.057]
[6]贺诗佳,孙 玲,张树山.脑内肾素-血管紧张素系统在帕金森病发病机制中的作用研究[J].医学信息,2021,34(03):34.[doi:10.3969/j.issn.1006-1959.2021.03.011]
 HE Shi-jia,SUN Ling,ZHANG Shu-shan.Study on the Role of Renin-angiotensin System in the Pathogenesis of Parkinson’s Disease[J].Journal of Medical Information,2021,34(19):34.[doi:10.3969/j.issn.1006-1959.2021.03.011]
[7]许红玉,梅育嘉,罗杰峰.神经节苷脂联合复方左旋多巴治疗帕金森病的效果[J].医学信息,2021,34(03):160.[doi:10.3969/j.issn.1006-1959.2021.03.045]
 XU Hong-yu,MEI Yu-jia,LUO Jie-feng.The Effect of Ganglioside Combined with Benserazide in the Treatment of Parkinson’s Disease[J].Journal of Medical Information,2021,34(19):160.[doi:10.3969/j.issn.1006-1959.2021.03.045]
[8]胡方婷,薛冬辉.运动-心理-睡眠护理干预对帕金森病患者负性情绪的影响[J].医学信息,2021,34(05):181.[doi:10.3969/j.issn.1006-1959.2021.05.053]
 HU Fang-ting,XUE Dong-hui.Effects of Exercise-psychological-sleep Nursing Intervention on Negative Emotions in Patients with Parkinson’s Disease[J].Journal of Medical Information,2021,34(19):181.[doi:10.3969/j.issn.1006-1959.2021.05.053]
[9]张 欣,王 伟,司伟岳,等.1-甲基-4-苯基-1,2,3,6四氢吡啶诱导小鼠嗅觉障碍的实验研究[J].医学信息,2021,34(07):82.[doi:10.3969/j.issn.1006-1959.2021.07.022]
 ZHANG Xin,WANG Wei,SI Wei-yue,et al.Experimental study on 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced olfactory dysfunction in mice[J].Journal of Medical Information,2021,34(19):82.[doi:10.3969/j.issn.1006-1959.2021.07.022]
[10]马金荣.柴胡类疏肝方药治疗帕金森病伴发抑郁患者的疗效[J].医学信息,2021,34(09):168.[doi:10.3969/j.issn.1006-1959.2021.09.045]
 MA Jin-rong.Effect of Chaihu Shugan Prescriptionon Patients with Parkinson’s Disease Complicated with Depression[J].Journal of Medical Information,2021,34(19):168.[doi:10.3969/j.issn.1006-1959.2021.09.045]

更新日期/Last Update: 1900-01-01