[1]王啸云,杨健康.黑色素瘤外泌体基因的差异分析和ceRNA网络构建[J].医学信息,2024,37(04):8-13.[doi:10.3969/j.issn.1006-1959.2024.04.002]
 WANG Xiao-yun,YANG Jian-kang.Expression of Exosomal Genes in Melanoma and Construction of ceRNA Network[J].Journal of Medical Information,2024,37(04):8-13.[doi:10.3969/j.issn.1006-1959.2024.04.002]
点击复制

黑色素瘤外泌体基因的差异分析和ceRNA网络构建()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
37卷
期数:
2024年04期
页码:
8-13
栏目:
生物信息学
出版日期:
2024-02-15

文章信息/Info

Title:
Expression of Exosomal Genes in Melanoma and Construction of ceRNA Network
文章编号:
1006-1959(2024)04-0008-06
作者:
王啸云杨健康
(大理大学基础医学院,云南 大理 671000)
Author(s):
WANG Xiao-yunYANG Jian-kang
(School of Basic Medical Sciences,Dali University,Dali 671000,Yunnan,China)
关键词:
黑色素瘤外泌体差异表达基因
Keywords:
MelanomaExosomesDifferentially expressed genes
分类号:
R739.5
DOI:
10.3969/j.issn.1006-1959.2024.04.002
文献标志码:
A
摘要:
目的 分析黑色素瘤(MEL)和健康人外周血外泌体差异表达基因,构建竞争性内源RNA(CeRNA)网络,寻找MEL新的分子机制。方法 从exoRBase 2.0外泌体数据库中下载21例黑色素瘤病人和118名健康人外周血RNA表达数据谱(包括mRNA、lncRNA和circRNA),利用R的limma包和Cytoscape软件找出差异表达基因,预测miRNA后构建CeRNA网络并可视化,并对CeRNA网络中的mRNA进行GO富集分析。结果 筛选出138个差异表达mRNA,135个差异表达lncRNA和33个差异表达circRNA。通过构建CeRNA网络发现,mRNA、lncRNA和circRNA竞争性地结合miRNA,且与miRNA相结合的circRNA表达均下调,mRNA表达大多下调,而lncRNA的表达则大多数呈现上调的趋势。CeRNA网络中的差异表达mRNA GO富集分析显示,这些基因主要与mRNA分解代谢过程的调节等相关。结论 健康人群和MEL患者外周血外泌体具有显著差异性,且mRNA、lncRNA和circRNA可以竞争性地与MEL相关的miRNA结合,实现相互调控。这些CeRNA基因为进一步研究MEL发生发展提供了分子基础,为MEL早期检查和治疗提供新靶点。
Abstract:
Objective To investigate the novel molecular mechanism of melanoma (MEL) exosomes by analyzing differentially expressed genes and constructing a competing endogenous RNA (CeRNA) network.Methods The RNA expression profiles (including mRNA, lncRNA and circRNA) of peripheral blood from 21 melanoma patients and 118 healthy people were downloaded from the exoRBase 2.0 exosome database. The differentially expressed genes were identified by R’s limma package and Cytoscape software. After predicting miRNAs, the CeRNA network was constructed and visualized, and the mRNAs in the CeRNA network were subjected to GO enrichment analysis.Results A total of 138 differentially expressed mRNAs, 135 differentially expressed lncRNAs and 33 differentially expressed circRNAs were screened. Through the construction of CeRNA network, it was found that mRNA, lncRNA and circRNA competitively bind to miRNA, and the expression of circRNA combined with miRNA was down-regulated. The expression of mRNA was mostly down-regulated, while the expression of lncRNA was mostly up-regulated. GO enrichment analysis of differentially expressed mRNAs in the CeRNA network showed that these genes were mainly related to the regulation of mRNA catabolic processes.Conclusion There are significant differences in peripheral blood exosomes between healthy people and MEL patients, and mRNA, lncRNA and circRNA can competitively bind to MEL-related miRNAs to achieve mutual regulation. These CeRNA genes provide a molecular basis for further study of the occurrence and development of MEL, and provide new targets for early detection and treatment of MEL.

参考文献/References:

[1]徐爱国.Wip1、SHH、GLI1蛋白在皮肤恶性黑色素瘤细胞中表达及其临床意义[D].泸州:西南医科大学,2015.[2]Dzwierzynski WW.Melanoma Risk Factors and Prevention[J].Clin Plast Surg,2021,48(4):543-550.[3]张海霞,李磊,金磊,等.云南省肿瘤医院1203例黑色素瘤临床分析[J].昆明医科大学学报,2022,43(8):56-60.[4]Teixido C,Castillo P,Martinez-Vila C,et al.Molecular Markers and Targets in Melanoma[J].Cells,2021,10(9):2320.[5]Wozniak M,Czyz M.The Functional Role of Long Non-Coding RNAs in Melanoma[J].Cancers (Basel),2021,13(19):4848.[6]Salunkhe S,Vaidya T.CD40-miRNA axis controls prospective cell fate determinants during B cell differentiation[J].Mol Immunol,2020,126:46-55.[7]Jia X,Shao W,Tian S.Berberine alleviates myocardial ischemia-reperfusion injury by inhibiting inflammatory response and oxidative stress:the key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction[J].Pharm Biol,2022,60(1):652-663.[8]Bartel DP.MicroRNAs:target recognition and regulatory functions[J].Cell,2009,136(2):215-233.[9]Lui PY,Jin DY,Stevenson NJ.MicroRNA:master controllers of intracellular signaling pathways[J].Cell Mol Life Sci,2015,72(18):3531-3542.[10]Lee WJ,Shin CH,Ji H,et al.hnRNPK-regulated LINC00263 promotes malignant phenotypes through miR-147a/CAPN2[J].Cell Death Dis,2021,12(4):290.[11]Iwao Y,Okamoto Y,Shirahama H,et al.eIF4B enhances ATF4 expression and contributes to cellular adaptation to asparagine limitation in BRAF-mutated A375 melanoma[J].Biochem Biophys Res Commun,2021,573:93-99.[12]Nagasawa I,Koido M,Tani Y,et al.Disrupting ATF4 Expression Mechanisms Provides an Effective Strategy for BRAF-Targeted Melanoma Therapy[J].iScience,2020,23(4):101028.[13]Li Y,Gao Y,Niu X,et al.LncRNA BASP1-AS1 interacts with YBX1 to regulate Notch transcription and drives the malignancy of melanoma[J].Cancer Sci,2021,112(11):4526-4542.[14]Cagle P,Qi Q,Niture S,et al.KCNQ1OT1:An Oncogenic Long Noncoding RNA[J].Biomolecules,2021,11(11):1602.[15]Guo B,Zhang Q,Wang H,et al.KCNQ1OT1 promotes melanoma growth and metastasis[J].Aging (Albany NY),2018,10(4):632-644.[16]Chen P,Sun LS,Shen HM,et al.LncRNA KCNQ1OT1 accelerates ovarian cancer progression via miR-125b-5p/CD147 axis[J].Pathol Res Pract,2022,239:154135.[17]Zang Y,Zhu J,Li Q,et al.miR-137-3p Modulates the Progression of Prostate Cancer by Regulating the JNK3/EZH2 Axis[J].Onco Targets Ther,2020,13:7921-7932.[18]Lu HQ,Wang RK,Wang HR,et al.miR-137 Inhibition of the Invasion,Metastasis,and Epithelial-Mesenchymal Transition of Nasopharyngeal Cancer by Regulating KDM1A[J].J Oncol,2021,2021:6060762.[19]Qi J,Wang WW,Chen W,et al.Mechanism of miR-137 regulating migration and invasion of melanoma cells by targeting PIK3R3 gene[J].J Cell Biochem,2019,120(5):8393-8400.[20]Xu C,Chen L,Wang RJ,et al.LncRNA KCNQ1OT1 knockdown inhibits ox-LDL-induced inflammatory response and oxidative stress in THP-1 macrophages through the miR-137/TNFAIP1 axis[J].Cytokine,2022,155:155912.[21]Teng GY,Wang YJ,Geng M,et al.LncRNA MEG3 inhibits the growth,invasion and migration of Wilms’ tumor via Wnt/beta-catenin pathway[J].Eur Rev Med Pharmacol Sci,2020,24(19):9899-9907.[22]Wu M,Huang Y,Chen T,et al.LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis[J].J Cell Mol Med,2019,23(1):29-38.[23]Wu L,Zhu L,Li Y,et al.LncRNA MEG3 promotes melanoma growth,metastasis and formation through modulating miR-21/E-cadherin axis[J].Cancer Cell Int,2020,20:12.[24]Li P,Gao Y,Li J,et al.LncRNA MEG3 repressed malignant melanoma progression via inactivating Wnt signaling pathway[J].J Cell Biochem,2018,119(9):7498-7505.[25]Long J,Pi X.lncRNA-MEG3 Suppresses the Proliferation and Invasion of Melanoma by Regulating CYLD Expression Mediated by Sponging miR-499-5p[J].Biomed Res Int,2018,2018:2086564.[26]Haq S,Sarodaya N,Karapurkar JK,et al.CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression[J].Cancer Lett,2022,525:146-157.[27]Tan TG,Zybina Y,McKenna C,et al.SPATA2 and CYLD inhibit T cell infiltration into colorectal cancer via regulation of IFN-gamma/STAT1 axis[J].Front Oncol,2022,12:1016307.[28]Na TY,Schecterson L,Mendonsa AM,et al.The functional activity of E-cadherin controls tumor cell metastasis at multiple steps[J].Proc Natl Acad Sci U S A,2020,117(11):5931-5937.[29]Guerra E,Trerotola M,Relli V,et al.Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer[J].Neoplasia,2021,23(9):898-911.[30]Min S,Li L,Zhang M,et al.TGF-beta-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3,p38 MAPK,MAP2K4 and MAP2K7[J].Genes Immun,2012,13(8):621-631.[31]Liu Y,Liu C,Zhang A,et al.Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis[J].Aging (Albany NY),2019,11(15):5334-5350.

相似文献/References:

[1]李在明,魏正强.外泌体在结直肠癌中的研究进展[J].医学信息,2019,32(03):42.[doi:10.3969/j.issn.1006-1959.2019.03.014]
 LI Zai-ming,WEI Zheng-qiang.Research Progress of Exosomes in Colorectal Cancer[J].Journal of Medical Information,2019,32(04):42.[doi:10.3969/j.issn.1006-1959.2019.03.014]
[2]刘瀚予,贾莉莉,喻文立,等.外泌体在肝癌中的作用机制研究进展[J].医学信息,2020,33(08):26.[doi:10.3969/j.issn.1006-1959.2020.08.010]
 LIU Han-yu,JIA Li-li,YU Wen-li,et al.The Mechanism of Exosomes in Liver Cancer[J].Journal of Medical Information,2020,33(04):26.[doi:10.3969/j.issn.1006-1959.2020.08.010]
[3]蒋佳红,李 游,邓知敏,等.外泌体在肝癌中的应用研究[J].医学信息,2020,33(24):28.[doi:10.3969/j.issn.1006-1959.2020.24.009]
 JIANG Jia-hong,LI You,DENG Zhi-min,et al.Study on the Application of Exosomes in Liver Cancer[J].Journal of Medical Information,2020,33(04):28.[doi:10.3969/j.issn.1006-1959.2020.24.009]
[4]周 辉,沈伟锋,邵平扬.缺氧外泌体传递miR-199a-5p对胃癌细胞SGC-7901迁移和侵袭的影响[J].医学信息,2021,34(01):78.[doi:10.3969/j.issn.1006-1959.2021.01.021]
 ZHOU Hui,SHEN Wei-feng,SHAO Ping-yang.Effects of miR-199a-5p Delivered by Hypoxic Exosomes on the Migration and Invasion of Gastric Cancer Cells SGC-7901[J].Journal of Medical Information,2021,34(04):78.[doi:10.3969/j.issn.1006-1959.2021.01.021]
[5]舒 密.外泌体miRNAs在结直肠癌中的研究进展[J].医学信息,2021,34(15):15.[doi:10.3969/j.issn.1006-1959.2021.15.004]
 SHU Mi.Research Progress of Exosomal miRNAs in Colorectal Cancer[J].Journal of Medical Information,2021,34(04):15.[doi:10.3969/j.issn.1006-1959.2021.15.004]
[6]韩 丹.外泌体在脓毒症诊疗作用中的研究进展[J].医学信息,2023,36(05):173.[doi:10.3969/j.issn.1006-1959.2023.05.036]
 HAN Dan.Research Progress of Exosomes in Diagnosis and Treatment of Sepsis[J].Journal of Medical Information,2023,36(04):173.[doi:10.3969/j.issn.1006-1959.2023.05.036]
[7]毛新志,童宏方,戴和平,等.内质网应激前列腺癌细胞通过STAT3信号途径促进巨噬细胞M2极化的研究[J].医学信息,2022,35(03):74.[doi:10.3969/j.issn.1006-1959.2022.03.018]
 MAO Xin-zhi,TONG Hong-fang,DAI He-ping,et al.Endoplasmic Reticulum Stressed Prostate Cancer Cells Promotes Macrophage M2Polarization Through STAT3 Signaling Pathway[J].Journal of Medical Information,2022,35(04):74.[doi:10.3969/j.issn.1006-1959.2022.03.018]
[8]廖若蕙,沈国双.外泌体携带的microRNAs在乳腺癌中的作用[J].医学信息,2022,35(04):42.[doi:10.3969/j.issn.1006-1959.2022.04.011]
 LIAO Ruo-hui,SHEN Guo-shuang.Role of Exosome-derived microRNAs in Breast Cancer[J].Journal of Medical Information,2022,35(04):42.[doi:10.3969/j.issn.1006-1959.2022.04.011]
[9]牛建明,冯疆鑫,杜志峰.外泌体对骨质疏松症调控机制及中药干预作用[J].医学信息,2023,36(11):184.[doi:10.3969/j.issn.1006-1959.2023.11.040]
 NIU Jian-ming,FENG Jiang-xin,DU Zhi-feng.Regulatory Mechanism of Exosomes on Osteoporosis and Intervention Effect of Chinese Herbal Medicines[J].Journal of Medical Information,2023,36(04):184.[doi:10.3969/j.issn.1006-1959.2023.11.040]
[10]钟剑锋,王杰鑫,李上海,等.单核巨噬细胞膜修饰iPSC-CM来源外泌体靶向修复损伤心脏的实验研究[J].医学信息,2023,36(17):76.[doi:10.3969/j.issn.1006-1959.2023.17.014]
 ZHONG Jian-feng,WANG Jie-xin,LI Shang-hai,et al.Experimental Study on Targeted Repair of Injured Heart by iPSC-CM-derived Exosomes Modified by Monocyte-macrophage Membrane[J].Journal of Medical Information,2023,36(04):76.[doi:10.3969/j.issn.1006-1959.2023.17.014]

更新日期/Last Update: 1900-01-01