[1]李 敖,王玉然,王文浩.基于公共数据库分析自噬相关基因在肺腺癌患者中的预后意义[J].医学信息,2022,35(22):17-22.[doi:10.3969/j.issn.1006-1959.2022.22.003]
 LI Ao,WANG Yu-ran,WANG Wen-hao.Prognostic Significance of Autophagy-related Genes in Patients with Lung Adenocarcinoma Based on Public Database Analysis[J].Journal of Medical Information,2022,35(22):17-22.[doi:10.3969/j.issn.1006-1959.2022.22.003]
点击复制

基于公共数据库分析自噬相关基因在肺腺癌患者中的预后意义()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年22期
页码:
17-22
栏目:
生物信息学
出版日期:
2022-11-15

文章信息/Info

Title:
Prognostic Significance of Autophagy-related Genes in Patients with Lung Adenocarcinoma Based on Public Database Analysis
文章编号:
1006-1959(2022)22-0017-06
作者:
李 敖王玉然王文浩
(潍坊医学院附属医院肿瘤科1,放疗科2,山东 潍坊 261041)
Author(s):
LI AoWANG Yu-ranWANG Wen-hao
(Department of Medical Oncology1,Department of Radiotherapy2,Affiliated Hospital of Weifang Medical University,Weifang 261041,Shandong,China)
关键词:
肺腺癌自噬相关基因预后模型生物信息学
Keywords:
Lung adenocarcinomaAutophagy-related genesPrognostic modelBioinformatics
分类号:
R734.2
DOI:
10.3969/j.issn.1006-1959.2022.22.003
文献标志码:
A
摘要:
目的 利用生物信息学技术对自噬相关基因(ATGs)进行分析,并建立预测肺腺癌患者预后的基因表达模型。方法 利用TCGA数据库筛选肿瘤组织和正常组织中差异表达的ATGs,进行GO和KEGG富集分析确定与ATGs相关的信号通路,再进行单变量和多变量Cox回归分析确定与生存率相关的ATGs,最后根据中位风险评分进行生存分析,评价风险评分的预后价值。结果 共筛选出200个ATGs在肺腺癌中差异表达。30个ATGs被筛选出作为与预后相关的基因。GO和KEGG富集分析均显示,ATGs与自噬相关信号通路有关。单因素Cox回归分析显示,从肺腺癌TCGA数据库中获得了21个预后相关ATGs,其中9个ATGs(ATG4A、NLRC4、PRKCD、DAPK2、SIRT2、CCR2、ATG16L2、DLC1、DRAM1)被认为是保护性基因(HR<1),其余12个ATGs(ITGB4、BIRC5、CTSL、SPHK1、APOL1、ITGA6、ITGB1、GAPDH、ERO1A、EIF2S1、MBTPS2、ST13)被认为是危险性基因(HR>1)。多因素Cox回归分析显示,低风险组和高风险组中包含的8个ATGs(ATG4A、CCR2、MBTPS2、APOL1、ERO1A、SPHK1、ST13和ITGA6)的表达差异,而高危组患者倾向于表达危险基因,而低危组患者倾向于表达保护基因。风险评分是肺腺癌TCGA的独立预后指标(P<0.05),风险评分(AUC=0.763)具有更好的预测性能。结论 本研究构建了一个基于8个ATGs的预后特征模型,为肺腺癌患者的预后评估提供了方向,并为治疗方案提供了潜在研究靶点。
Abstract:
Objective To analyze autophagy-related genes (ATGs) by bioinformatics and establish a gene expression model for predicting the prognosis of patients with lung adenocarcinoma.Methods The TCGA database was used to screen differentially expressed ATGs in tumor tissues and normal tissues. GO and KEGG enrichment analysis was performed to determine the signaling pathways associated with ATGs. Univariate and multivariate Cox regression analysis was performed to determine ATGs associated with survival rate. Finally, survival analysis was performed according to the median risk score to evaluate the prognostic value of the risk score.Results A total of 200 ATGs were differentially expressed in lung adenocarcinoma. Thirty ATGs were screened as genes associated with prognosis. GO and KEGG enrichment analysis showed that ATGs were related to autophagy-related signaling pathways. Univariate Cox regression analysis showed that 21 prognostic ATGs were obtained from the TCGA database of lung adenocarcinoma, of which 9 ATGs (ATG4A, NLRC4, PRKCD, DAPK2, SIRT2, CCR2, ATG16L2, DLC1, DRAM1) were considered to be protective genes (HR<1), the remaining 12 ATGs (ITGB4, BIRC5, CTSL, SPHK1, APOL1, ITGA6, ITGB1, GAPDH, ERO1A, EIF2S1, MBTPS2, ST13) were considered as risk genes (HR>1). Multivariate Cox regression analysis showed that the expression of 8 ATGs (ATG4A, CCR2, MBTPS2, APOL1, ERO1A, SPHK1, ST13 and ITGA6) contained in the low-risk group and the high-risk group was different, while the patients in the high-risk group tended to express risk genes, while the patients in the low-risk group tended to express protective genes. Risk score was an independent prognostic indicator of TCGA in lung adenocarcinoma (P<0.05), and risk score (AUC=0.763) had better predictive performance.Conclusion This study constructs a prognostic feature model based on 8 ATGs, which provides a direction for the prognosis evaluation of lung adenocarcinoma patients and a potential target for treatment.

参考文献/References:

[1]Sung H,Ferlay J,Siegel RL,et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J].CA Cancer J Clin,2021,71(3):209-249.[2]Siegel RL,Miller KD,Jemal A.Cancer statistics,2020[J].CA Cancer J Clin,2020,70(1):7-30[3]Rotow J,Bivona TG.Understanding and targeting resistance mechanisms in NSCLC[J].Nat Rev Cancer,2017,17(11):637-658.[4]Amaravadi RK,Kimmelman AC,Debnath J.Targeting Autophagy in Cancer: Recent Advances and Future Directions[J].Cancer Discov,2019,9(9):1167-1181.[5]Poillet-Perez L,White E.Role of tumor and host autophagy in cancer metabolism[J].Genes Dev,2019,33(11-12):610-619.[6]Levy JMM,Towers CG,Thorburn A.Targeting autophagy in cancer[J].Nat Rev Cancer,2017,17(9):528-542.[7]Liu H,He Z,Simon HU.Protective role of autophagy and autophagy-related protein 5 in early tumorigenesis[J].J Mol Med (Berl),2015,93(2):159-164.[8]Li YJ,Lei YH,Yao N,et al.Autophagy and multidrug resistance in cancer[J].Chin J Cancer,2017,36(1):52.[9]Russo M,Russo GL.Autophagy inducers in cancer[J].Biochem Pharmacol,2018,153:51-61.[10]Amaravadi R,Kimmelman AC,White E.Recent insights into the function of autophagy in cancer[J].Genes Dev,2016,30(17):1913-1930.[11]Li M,Wang Q,Zhang X,et al.Exosomal miR-126 blocks the development of non-small cell lung cancer through the inhibition of ITGA6[J].Cancer Cell Int,2020,20(1):574.[12]Amaravadi RK,Kimmelman AC,Debnath J.Targeting autophagy in cancer: recent advances and future directions[J].Cancer Discov,2019,9(9):1167-1181. [13]Wilde L,Tanson K,Curry J,et al.Autophagy in cancer: a complex relationship[J].Biochem J,2018,475(11):1939-1954.[14]Smith AG,Macleod KF.Autophagy,cancer stem cells and drug resistance[J].J Pathol,2019,247(5):708-718.[15]Svarcbahs R,J?覿ntti M,Kilpel?覿inen T,et al.Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A[J].Pharmacol Res,2020,151:104558.[16]He Q,Lu Y,Hu S,et al.An intron SNP rs807185 in ATG4A decreases the risk of lung cancer in a southwest Chinese population[J].Eur J Cancer Prev,2016,25(4):255-258.[17]Pan B,Chen Y,Song H,et al.Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A[J].Oncotarget,2015,6(1):317-331.[18]Lim SY,Yuzhalin AE,Gordon-Weeks AN,et al.Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J].Oncotarget,2016,7(19):28697-28710.[19]Kim KM,An AR,Park HS,et al.Combined expression of protein disulfide isomerase and endoplasmic reticulum oxidoreductin 1-α is a poor prognostic marker for non-small cell lung cancer[J].Oncol Lett,2018,16(5):5753-5760.[20]Song L,Xiong H,Li J,et al.Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-κB pathway in human non-small cell lung cancer[J].Clin Cancer Res,2011,17(7):1839-1849.[21]Zhang Y,Wang Y,Wan Z,et al.Sphingosine kinase 1 and cancer: a systematic review and meta-analysis[J].PLoS One,2014,9(2):e90362.

相似文献/References:

[1]刘治利,葛明建.肺部磨玻璃结节的CT特征与治疗策略进展[J].医学信息,2018,31(11):49.[doi:10.3969/j.issn.1006-1959.2018.11.016]
 LIU Zhi-li,GE Ming-jian.Advances in CT Features and Treatment Strategies of Pulmonary Ground-glass Nodule[J].Journal of Medical Information,2018,31(22):49.[doi:10.3969/j.issn.1006-1959.2018.11.016]
[2]彭玉龙,张 露,陈荣辉,等.吉西他滨与培美曲塞联合卡铂治疗晚期肺腺癌的临床观察[J].医学信息,2018,31(11):124.[doi:10.3969/j.issn.1006-1959.2018.11.039]
 PENG Yu-long,ZHANG Lu,CHEN Rong-hui,et al.Clinical Observation of Gemcitabine and Pemetrexed Combined with Carboplatin in Treatment of Advanced Lung Adenocarcinoma[J].Journal of Medical Information,2018,31(22):124.[doi:10.3969/j.issn.1006-1959.2018.11.039]
[3]葛丽艳,王 琦,朱 宏,等.基于数据挖掘分析GPR35表达对肺腺癌预后的影响[J].医学信息,2018,31(23):86.[doi:10.3969/j.issn.1006-1959.2018.23.024]
 GE Li-yan,WANG Qi,ZHU Hong,et al.The Effect of GPR35 Expression on Prognosis of Lung Adenocarcinoma was Analyzed Based on Data Mining[J].Journal of Medical Information,2018,31(22):86.[doi:10.3969/j.issn.1006-1959.2018.23.024]
[4]刘贤丰,李子俊.恩度联合培美曲塞与顺铂治疗晚期肺腺癌的临床效果观察[J].医学信息,2019,32(03):148.[doi:10.3969/j.issn.1006-1959.2019.03.048]
 LIU Xian-feng,LI Zi-jun.Clinical Observation of Endo Combined with Pemetrexed and Cisplatin in the Treatment of Advanced Lung Adenocarcinoma[J].Journal of Medical Information,2019,32(22):148.[doi:10.3969/j.issn.1006-1959.2019.03.048]
[5]黄琪峰,郑琳琳,张 菁.生物信息学分析筛选肺腺癌靶基因及评估预后的价值[J].医学信息,2019,32(22):62.[doi:10.3969/j.issn.1006-1959.2019.22.020]
 HUANG Qi-feng,ZHENG Lin-lin,ZHANG Jing.Bioinformatics Analysis of Screening Lung Adenocarcinoma Target Genes and Evaluating Prognostic Value[J].Journal of Medical Information,2019,32(22):62.[doi:10.3969/j.issn.1006-1959.2019.22.020]
[6]唐怀慧,王忠帅,邵茜茜,等.基于TCGA数据库肺腺癌RNAs构建ceRNA网络的综合分析[J].医学信息,2020,33(07):90.[doi:10.3969/j.issn.1006-1959.2020.07.025]
 TANG Huai-hui,WANG Zhong-shuai,SHAO Qian-qian,et al.Comprehensive Analysis of Constructing ceRNA Network Based on TCGA Database of Lung Adenocarcinoma RNAs[J].Journal of Medical Information,2020,33(22):90.[doi:10.3969/j.issn.1006-1959.2020.07.025]
[7]莫俊贤,冼 磊.miRNA-21及PTEN在肺腺癌组织中的表达及意义[J].医学信息,2020,33(09):77.[doi:10.3969/j.issn.1006-1959.2020.09.022]
 MO Jun-xian,XIAN Lei.Expression and Significance of miRNA-21 and PTEN in Lung Adenocarcinoma[J].Journal of Medical Information,2020,33(22):77.[doi:10.3969/j.issn.1006-1959.2020.09.022]
[8]张祥鑫,董星星,耿 涛,等.基于与铁死亡相关基因的肺腺癌的新型预后模型构建[J].医学信息,2021,34(15):96.[doi:10.3969/j.issn.1006-1959.2021.15.025]
 ZHANG Xiang-xin,DONG Xing-xing,GENG Tao,et al.Construction of A Novel Prognostic Model of Lung Adenocarcinoma Based on Genes Related to Iron Death[J].Journal of Medical Information,2021,34(22):96.[doi:10.3969/j.issn.1006-1959.2021.15.025]
[9]孔德伟,吴 铭,张 岩.肺腺癌骨转移肿瘤标记物的研究进展[J].医学信息,2022,35(23):171.[doi:10.3969/j.issn.1006-1959.2022.23.038]
 KONG De-wei,WU Ming,ZHANG Yan.Research Progress on Tumor Markers of Bone Metastasis in Lung Adenocarcinoma[J].Journal of Medical Information,2022,35(22):171.[doi:10.3969/j.issn.1006-1959.2022.23.038]
[10]思 璐,秦秋雯,沈 印,等.基于生物信息学分析筛选肺腺癌免疫预后相关lncRNA[J].医学信息,2023,36(01):1.[doi:10.3969/j.issn.1006-1959.2023.01.001]
 SI Lu,QIN Qiu-wen,SHEN Yin,et al.Screening of lncRNA Related to Immune Prognosis of Lung Adenocarcinoma Based on Bioinformatics Analysis[J].Journal of Medical Information,2023,36(22):1.[doi:10.3969/j.issn.1006-1959.2023.01.001]

更新日期/Last Update: 1900-01-01