[1]屈小亚,张 宇,杨 松,等.肺纤维化相关miRNA筛选及生物信息学分析[J].医学信息,2025,38(03):1-6.[doi:10.3969/j.issn.1006-1959.2025.03.001]
 QU Xiaoya,ZHANG Yu,YANG Song,et al.Screening and Bioinformatics Analysis of miRNAs Related to Pulmonary Fibrosis[J].Journal of Medical Information,2025,38(03):1-6.[doi:10.3969/j.issn.1006-1959.2025.03.001]
点击复制

肺纤维化相关miRNA筛选及生物信息学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
38卷
期数:
2025年03期
页码:
1-6
栏目:
生物信息学
出版日期:
2025-02-01

文章信息/Info

Title:
Screening and Bioinformatics Analysis of miRNAs Related to Pulmonary Fibrosis
文章编号:
1006-1959(2025)03-0001-06
作者:
屈小亚张 宇杨 松阮文雯
厦门医学院呼吸疾病研究所,福建 厦门 361023
Author(s):
QU Xiaoya ZHANG Yu YANG Song RUAN Wenwen
Institute of Respiratory Diseases Xiamen Medical College, Xiamen 361023, Fujian, China
关键词:
肺纤维化miRNA生物信息学MAPK信号通路
Keywords:
Pulmonary fibrosis miRNA Bioinformatics MAPK signaling pathway
分类号:
R563
DOI:
10.3969/j.issn.1006-1959.2025.03.001
文献标志码:
A
摘要:
目的 探究肺纤维化中miRNA可能的作用机制。方法 从GEO数据库中筛选肺纤维化相关miRNA芯片数据,筛选出两个数据集中共同的差异miRNA,并在相关数据库中预测靶基因与LncRNA。通过GO和KEGG分析上述靶基因的生物学作用,利用STRING数据库构建蛋白互作网络。结果 GSE27430与GSE13316数据集共交集筛选出差异miRNA 12个,其中上调miRNA 5个,下调miRNA 7个。GO富集分析显示,差异基因主要与轴突生成发育、细胞连接、突触组织、早期核内体、神经元突触等有关。KEGG结果显示,差异基因主要涉及MAPK信号通路、Ras信号通路、肿瘤蛋白多糖、轴突导向信号和PLD信号通路等。PPI网络图显示,ACTR2、ACTR3和GNG12等蛋白质与其他蛋白质有超10组联系。结论 肺纤维化相关miRNA筛选及分析可为miRNA在肺纤维化中的发病机制研究提供参考,为肺纤维化治疗拓宽思路。
Abstract:
Objective To explore the possible mechanism of miRNA in pulmonary fibrosis. Methods The miRNA microarray data related to pulmonary fibrosis were screened from the GEO database, and the common differential miRNAs in the two data sets were screened out, and the target genes and LncRNAs were predicted in the relevant databases. The biological functions of the above target genes were analyzed by GO and KEGG, and the protein interaction network was constructed by using STRING database. Results A total of 12 differential miRNAs were screened by the intersection of GSE27430 and GSE13316 data sets, including 5 up-regulated miRNAs and 7 down-regulated miRNAs. GO enrichment analysis showed that the differentially expressed genes were mainly related to axon formation and development, cell connection, synaptic tissue, early nuclear endosome, neuron synapse and so on. KEGG results showed that the differential genes were mainly involved in MAPK signaling pathway, Ras signaling pathway, tumor proteoglycan, axon guidance signal and PLD signaling pathway. The PPI network diagram showed that proteins such as ACTR2, ACTR3 and GNG12 had more than 10 groups of connections with other proteins. Conclusion The screening and analysis of miRNAs related to pulmonary fibrosis can provide reference for the study of the pathogenesis of miRNAs in pulmonary fibrosis, and broaden the thinking for the treatment of pulmonary fibrosis.

参考文献/References:

[1]Deng Z,Fear MW,Choi YS,et al.The extracellular matrix and mechanotransductionin pulmonary fibrosis[J].Int J Biochem Cell Biol,2020,126:05802.[2]Keishi S,Hirotaka O,Natsumi W,et al.Efficacy of early antifibrotic treatment for idiopathic pulmonary fibrosis[J].BMC Pulmonary Medicine,2021,21(1):218.[3]高秀峰,黄友明,程茜,等.特发性肺纤维化患者肿瘤标志物升高在肺癌早期筛查的临床意义[J].皖南医学院学报,2023,42(3):240-242.[4]欧阳小荔,彭红.特发性肺纤维化预后的影响因素[J].中国呼吸与危重监护杂志,2021,20(11):824-830.[5]Hana A,Evelyn P,Avinash A,et al.Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis:A Narrative Review[J].Pulmonary Therapy,2023,9(2):177-193.[6]Glass DS,Grossfeld D,Renna HA,et al.Idiopathic pulmonary fibrosis: Current and future treatment[J].Clin Respir J,2022,16(2):84-96.[7]Saliminejad K,Khorram Khorshid HR,Soleymani Fard S,et al.An overview of microRNAs: Biology, functions, therapeutics, and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465.[8]Galasso M,Sana ME,Volinia S.Non-coding RNAs: a key to future personalized molecular therapy?[J].Genome Med,2010,2(2):12.[9]Zhuang Y,Dai J,Wang Y,et al.MiR-338 targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition[J].Am J Transl Res,2016,8(7):3206-3213.[10]Jeon S,Jin H,Kim JM,et al.The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis[J].J Biomed Sci,2023,30(1):2.[11]梁春联,章琳,李秀丽.MiRNA-153调控SNAI1在特发性肺间质纤维化中的抗纤维化作用[J].临床肺科杂志,2020,25(11):1684-1687.[12]Angulo M,Lecuona E,Sznajder JI.Role of MicroRNAs in lung disease[J].Arch Bronconeumol,2012,48(9):325-30.[13]Wuyts WA,Wijsenbeek M,Bondue B,et al.Idiopathic Pulmonary Fibrosis: Best Practice in Monitoring and Managing a Relentless Fibrotic Disease[J].Respiration,2020,99(1):73-82.[14]于晓涛,杨忠杰,应真真,等.基于生物信息学筛选特发性肺纤维化差异基因及中药预测[J].中医药信息,2022,39(9):68-74,84[15]石卓林,杨晓花,袁晓梅.特发性肺纤维化患者血清外泌体microRNA表达谱的变化及临床意义[J].新乡医学院学报,2022,39(5):481-485.[16]张华伟,于丽佳,张春民,等.外泌体miRNA的生物学功能及其在肺纤维化疾病中的调控作用[J].生物化学与生物物理进展,2019,46(11):1073-1084.[17]Seok HJ,Choi JY,Lee DH,et al.miR-765 as a promising biomarker for low-dose radiation-induced pulmonary fibrosis[J].Noncoding RNA Res,2023,9(1):33-43. [18]黄健,汪涛,苏盈笑,等.MicroRNA-101对肺尘埃沉着病肺纤维化影响的研究[J].检验医学与临床,2023,20(15):2192-2194,2200[19]Matsushima S,Ishiyama J.MicroRNA-29c regulates apoptosis sensitivity via modulation of the cell-surface death receptor, Fas, in lung fibroblasts[J].Am J Physiol Lung Cell Mol Physiol,2016,311(6):L1050-L1061.[20]刘艳萍,雷媛娣,蔡颖,等.肺纤维化circRNA及miRNA芯片数据挖掘及生物信息学分析[J].生命的化学,2020,40(10):1850-1860.[21]黄彬,郑金旭,张军.非编码RNA与特发性肺纤维化进程中的干细胞异常[J].中国组织工程研究,2023,27(1):130-137.[22]Zhao C,Bu E,Zhang C,et al.Deciphering the molecular mechanisms of Maxing Huoqiao Decoction in treating pulmonary fibrosis via transcriptional profiling and circRNA-miRNA-mRNA network analysis[J].Phytomedicine,2023,115:154754.[23]Coralie M,Fanny L,Victor T,et al.Inhibition of the Arp2/3 complex represses human lung myofibroblast differentiation and attenuates bleomycin-induced pulmonary fibrosis.[J].British Journal of Pharmacology,2021,179(1):125-140.[24]Abdullahi A,Chukwuebuka UV,Samuel OF,et al.Checkpoints and Immunity in Cancers: Role of GNG12[J].Pharmacological Research,2022,180:106242.

相似文献/References:

[1]赵瑶瑶,高 川,胡佳杰.循环miRNA监测肝细癌的研究[J].医学信息,2019,32(08):48.[doi:10.3969/j.issn.1006-1959.2019.08.016]
 ZHAO Yao-yao,GAO Chuan,HU Jia-jie.Research on the Study of Circulating miRNA for Monitoring Hepatocellular Carcinoma[J].Journal of Medical Information,2019,32(03):48.[doi:10.3969/j.issn.1006-1959.2019.08.016]
[2]魏绮琪,张 颖.miR-200c与卵巢癌关系的研究[J].医学信息,2020,33(03):53.[doi:10.3969/j.issn.1006-1959.2020.03.016]
 WEI Qi-qi,ZHANG Ying.Study on the Relationship Between miR-200c and Ovarian Cancer[J].Journal of Medical Information,2020,33(03):53.[doi:10.3969/j.issn.1006-1959.2020.03.016]
[3]何 创,王海燕,肖建斌,等.Caveolin-1在内毒素性肺损伤所致的肺纤维化中的表达及临床意义[J].医学信息,2020,33(13):65.[doi:10.3969/j.issn.1006-1959.2020.13.018]
 HE Chuang,WANG Hai-yan,XIAO Jian-bin,et al.Caveolin-1 Expression and Clinical Significance in Pulmonary Fibrosis Caused by Endotoxic Lung Injury[J].Journal of Medical Information,2020,33(03):65.[doi:10.3969/j.issn.1006-1959.2020.13.018]
[4]韩浩川,张 曦.糖尿病肾病的发病机制研究[J].医学信息,2021,34(07):39.[doi:10.3969/j.issn.1006-1959.2021.07.011]
 HAN Hao-chuan,ZHANG Xi.Study on the Pathogenesis of Diabetic Nephropathy[J].Journal of Medical Information,2021,34(03):39.[doi:10.3969/j.issn.1006-1959.2021.07.011]
[5]杨立顺,陈思佳,康建华.miRNA和脂联素在2型糖尿病发病机制中的研究[J].医学信息,2021,34(08):50.[doi:10.3969/j.issn.1006-1959.2021.08.013]
 YANG Li-shun,CHEN Si-jia,KANG Jian-hua.Study on miRNA and Adiponectin in the Pathogenesis of Type 2 Diabetes Mellitus[J].Journal of Medical Information,2021,34(03):50.[doi:10.3969/j.issn.1006-1959.2021.08.013]
[6]贾 静.综合护理对肺纤维化合并肺部感染及呼吸衰竭患者临床疗效及肺功能的影响[J].医学信息,2021,34(08):189.[doi:10.3969/j.issn.1006-1959.2021.08.053]
 JIA Jing.The Effect of Comprehensive Nursing Care on the Clinical Efficacy and Lung Function of Patients with Pulmonary Fibrosis Combined with Pulmonary Infection and Respiratory Failure[J].Journal of Medical Information,2021,34(03):189.[doi:10.3969/j.issn.1006-1959.2021.08.053]
[7]李 颖,张再伟.miRNA在急性心肌梗死早期诊断中的作用及其机制研究[J].医学信息,2022,35(05):40.[doi:10.3969/j.issn.1006-1959.2022.05.010]
 LI Ying,ZHANG Zai-wei.The Role and Mechanism of miRNA in Early Diagnosis of Acute Myocardial Infarction[J].Journal of Medical Information,2022,35(03):40.[doi:10.3969/j.issn.1006-1959.2022.05.010]
[8]胡嘉莉,华 琳.miRNA-mRNA双重表达谱在前列腺癌分子调控机制中的作用[J].医学信息,2022,35(16):18.[doi:10.3969/j.issn.1006-1959.2022.16.004]
 HU Jia-li,HUA Lin.Role of miRNA-mRNA Dual Expression Profile in Molecular Regulation of Prostate Cancer[J].Journal of Medical Information,2022,35(03):18.[doi:10.3969/j.issn.1006-1959.2022.16.004]
[9]邹震海,程 琪,李 中,等.基于生物信息学筛选膀胱癌预后相关的关键miRNAs并验证[J].医学信息,2022,35(22):1.[doi:10.3969/j.issn.1006-1959.2022.22.001]
 ZOU Zhen-hai,CHENG Qi,LI Zhong,et al.Screening and Verification Key miRNAs Related to Prognosis of Bladder Cancerbased on Bioinformatics[J].Journal of Medical Information,2022,35(03):1.[doi:10.3969/j.issn.1006-1959.2022.22.001]
[10]王文光,王玉杰,刘 强,等.不同民族前列腺癌患者癌组织miRNA表达差异研究[J].医学信息,2023,36(01):7.[doi:10.3969/j.issn.1006-1959.2023.01.002]
 WANG Wen-guang,WANG Yu-jie,LIU Qiang,et al.Differential Expression of miRNA in Cancer Tissues of Patients with Prostate Cancer in Different Nationalities[J].Journal of Medical Information,2023,36(03):7.[doi:10.3969/j.issn.1006-1959.2023.01.002]

更新日期/Last Update: 1900-01-01