参考文献/References:
[1]Joslin EP.The Prevention of Diabetes Mellitus[J].JAMA,2021,325(2):190.[2]Fralick M,Jenkins AJ,Khunti K,et al.Global accessibility of therapeutics for diabetes mellitus [J].Nature Reviews Endocrinology,2022,18(4):199-204.[3]Tan TE,Wong TY.Diabetic retinopathy: Looking forward to 2030 [J].Frontiers in Endocrinology,2022,13:1077669.[4]Tang Y,Shi Y,Fan Z.The mechanism and therapeutic strategies for neovascular glaucoma secondary to diabetic retinopathy[J].Frontiers in Endocrinology,2023,14:1102361.[5]Wang GX,Hu XY,Zhao HX,et al.Development and validation of a diabetic retinopathy risk prediction model for middle-aged patients with type 2 diabetes mellitus[J].Frontiers in Endocrinology,2023,14:1132036.[6]Yapanis M,James S,Craig ME,et al.Complications of Diabetes and Metrics of Glycemic Management Derived From Continuous Glucose Monitoring[J].J Clin Endocrinol Metab,2022,107(6):e2221-e2236.[7]Blonde L,Umpierrez GE,Reddy SS,et al.American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update [J].Endocrine Practice,2022,28(10):923-1049.[8]Wang Q,Zeng N,Tang H,et al.Diabetic retinopathy risk prediction in patients with type 2 diabetes mellitus using a nomogram model [J].Frontiers in Endocrinology,2022,13:993423.[9]Hussein RM.Long non-coding RNAs: The hidden players in diabetes mellitus-related complications[J].Diabetes & Metabolic Syndrome,2023,17(10):102872.[10]Zhong Y,Xia J,Liao L,et al.Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review [J].International Journal of Biological Macromolecules,2024,259(Pt 1):128182.[11]Perisset S,Potilinski MC,Gallo JE.Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy [J].International Journal of Molecular Sciences,2023,24(18):13947.[12]Kaur P,Kotru S,Singh S,et al.miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms [J].Journal of Physiology and Biochemistry,2022,78(1):19-37.[13]Trotta MC,Gesualdo C,Platania CBM,et al.Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets?[J].Biochem Pharmacol,2021,186:114473.[14]Saleh AA,El-Hefnawy SM,Kasemy ZA,et al.Mi-RNA-93 and Mi-RNA-152 in the Diagnosis of Type 2 Diabetes and Diabetic Retinopathy [J].British Journal of Biomedical Science,2022,79:10192.[15]Wang H,Su X,Zhang QQ,et al.MicroRNA-93-5p participates in type 2 diabetic retinopathy through targeting Sirt1 [J].International Ophthalmology,2021,41(11):3837-3848.[16]Lu JM,Zhang ZZ,Ma X,et al.Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy [J].Experimental Eye Research,2020,190:107886.[17]Wang Y,Lin W,Ju J.MicroRNA-409-5p promotes retinal neovascularization in diabetic retinopathy [J].Cell Cycle,2020,19(11):1314-1325.[18]Shi Q,Tang J,Wang M,et al.Knockdown of Long Non-coding RNA TUG1 Suppresses Migration and Tube Formation in High Glucose-Stimulated Human Retinal Microvascular Endothelial Cells by Sponging miRNA-145 [J].Molecular Biotechnology,2022,64(2):171-177.[19]Li J,Hui L,Kang Q,et al.Down-regulation of microRNA-27b promotes retinal pigment epithelial cell proliferation and migration by targeting Nox2 [J].Pathology, Research and Practice,2018,214(7):925-933.[20]Zhang ZZ,Qin XH,Zhang J.MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway [J].American Journal of Physiology Endocrinology and Metabolism,2019,316(6):E1050-E1060.[21]Zhang J,Chen C,Zhang S,et al.LncRNA XIST restrains the activation of Müller cells and inflammation in diabetic retinopathy via stabilizing SIRT1[J].Autoimmunity,2021,54(8):504-513.[22]Wang L,Wang H,Luo Y,et al.Role of LncRNA MIAT in Diabetic Complications [J].Curr Med Chem,2024,31(13):1716-1725.[23]Shan K,Li CP,Liu C,et al.RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction [J].Biochem Biophys Res Commun,2017,482(4):777-783.[24]Liu C,Li CP,Wang JJ,et al.RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis [J].Biochem Biophys Res Commun,2016,479(2):198-203.[25]Thomas AA,Feng B,Chakrabarti S.ANRIL: A Regulator of VEGF in Diabetic Retinopathy [J]. Investigative Ophthalmology & Visual Science,2017,58(1):470-480.[26]Chen S,Zhong H,Wang Y,et al.The clinical significance of long non-coding RNA ANRIL level in diabetic retinopathy [J].Acta Diabetologica,2020,57(4):409-418.[27]Toraih EA,Abdelghany AA,Abd El Fadeal NM,et al.Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients [J].Graefes Arch Clin Exp Ophthalmol,2019,257(9):1897-1913.[28]Chen Z,Yang J,Gao Y,et al.LncRNA MALAT1 aggravates the retinal angiogenesis via miR-320a/HIF-1α axis in diabetic retinopathy [J].Experimental Eye Research,2022,218:108984.[29]Li X.lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p [J].Archives of Physiology and Biochemistry,2024,130(2):119-127.[30]Yu L,Fu J,Yu N,et al.Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p [J].Canadian Journal of Physiology and Pharmacology,2020,98(4):219-227.[31]Radhakrishnan R,Kowluru RA.Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy[J].Diabetes,2021,70(1):227-239.[32]Couturier A,Blot G,Vignaud L,et al.Reproducing diabetic retinopathy features using newly developed human induced-pluripotent stem cell-derived retinal Müller glial cells [J].Glia,2021,69(7):1679-1693.[33]Li CP,Wang SH,Wang WQ,et al.Long Noncoding RNA-Sox2OT Knockdown Alleviates Diabetes Mellitus-Induced Retinal Ganglion Cell (RGC) injury [J].Cellular and Molecular Neurobiology,2017,37(2):361-369.[34]Liu B,Cong C,Ma Y,et al.Potential value of lncRNAs as a biomarker for proliferative diabetic retinopathy [J].Eye (London, England),2022,36(3):575-584.[35]Chang X,Zhu G,Cai Z,et al.miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy [J].Frontiers in Endocrinology,2021,12:771552.[36]Kumari N,Karmakar A,Ahamad Khan MM,et al.The potential role of m6A RNA methylation in diabetic retinopathy [J].Experimental Eye Research,2021,208:108616.[37]Zhang SJ,Chen X,Li CP,et al.Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy [J].Investigative Ophthalmology&Visual Science,2017,58(14):6500-6509.[38]Feng Y,Yang Z,Lv B,et al.The Diagnostic and Therapeutic Role of Circular RNA HIPK3 in Human Diseases [J].Diagnostics (Basel, Switzerland),2022,12(10):2469.[39]Zatterale F,Raciti GA,Prevenzano I,et al.Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes [J].Biomolecules,2022,12(7):982.[40]Jiang Q,Liu C,Li CP,et al.Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction [J].J Clin Invest,2020,130(7):3833-3847.[41]Wang T,Li C,Shi M,et al.Circular RNA circZNF532 facilitates angiogenesis and inflammation in diabetic retinopathy via regulating miR-1243/CARM1 axis [J].Diabetology & Metabolic Syndrome,2022,14(1):14.[42]Liu C,Ge HM,Liu BH,et al.Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction [J].Proc Natl Acad Sci U S A,2019,116(15):7455-7464.[43]Wang M,Li Q,Jin M,et al.Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022)[J].Biomolecules,2022,12(12):1774.
相似文献/References:
[1]刘 璐,秦新月.阿尔茨海默病患者血尿酸水平变化的研究[J].医学信息,2018,31(02):96.[doi:10.3969/j.issn.1006-1959.2018.02.033]
LIU Lu,QIN Xin-yue.Study on the Changes of Serum Uric Acid in Alzheimer 's Disease Patients[J].Journal of Medical Information,2018,31(07):96.[doi:10.3969/j.issn.1006-1959.2018.02.033]
[2]李 铎,王建华.盐酸曲美他嗪片辅助治疗对冠心病伴心力衰竭患者氧化应激、心肌功能的影响[J].医学信息,2018,31(10):126.[doi:10.3969/j.issn.1006-1959.2018.10.041]
LI Duo,WANG Jian-hua.Effect of Trimetazidine Hydrochloride Tablets Adjuvant Therapy on Oxidative Stress and Myocardial Function in Patients with Coronary Heart Disease Complicated with Heart Failure[J].Journal of Medical Information,2018,31(07):126.[doi:10.3969/j.issn.1006-1959.2018.10.041]
[3]李 璟.右美托咪定减轻氧化应激改善H9C2细胞缺氧/复氧损伤[J].医学信息,2018,31(14):95.[doi:10.3969/j.issn.1006-1959.2018.14.027]
LI Jing.Dexmedetomidine Alleviated Oxidative Stress and Improved Hypoxia/Reoxygenation Injury in H9C2 Cells[J].Journal of Medical Information,2018,31(07):95.[doi:10.3969/j.issn.1006-1959.2018.14.027]
[4]李志俊,王 利,王 浩.姜黄素改善糖尿病肾病的作用机制研究[J].医学信息,2018,31(24):35.[doi:10.3969/j.issn.1006-1959.2018.24.010]
LI Zhi-jun,WANG Li,WANG Hao.Study on the Mechanism of Curcumin in Improving Diabetic Nephropathy[J].Journal of Medical Information,2018,31(07):35.[doi:10.3969/j.issn.1006-1959.2018.24.010]
[5]付晓春,沈小莉,李红群,等.雷公藤多苷促进斑马鱼肝脏损伤和氧化应激的实验研究[J].医学信息,2019,32(05):79.[doi:10.3969/j.issn.1006-1959.2019.05.024]
FU Xiao-chun,SHEN Xiao-li,LI Hong-qun,et al.Experimental Study on the Effects of Tripterygium Glycosides on Liver Damage and Oxidative Stress in Zebrafish[J].Journal of Medical Information,2019,32(07):79.[doi:10.3969/j.issn.1006-1959.2019.05.024]
[6]李肖亮,陈 科,莫 非,等.脑干出血急性期氧化应激及炎性反应的相关性[J].医学信息,2019,32(20):60.[doi:10.3969/j.issn.1006-1959.2019.20.017]
LI Xiao-liang,CHEN Ke,MO Fei,et al.Correlation between Oxidative Stress and Inflammatory Response in Acute Stage of Brain Stem Hemorrhage[J].Journal of Medical Information,2019,32(07):60.[doi:10.3969/j.issn.1006-1959.2019.20.017]
[7]杨巧侠,王成果,王元欣.乌司他丁预处理对HepG2细胞氧化损伤保护作用的研究[J].医学信息,2019,32(13):72.[doi:10.3969/j.issn.1006-1959.2019.13.020]
YANG Qiao-xia,WANG Cheng-guo,WANG Yuan-xin.Protective Effect of Ulinastatin Pretreatment on Oxidative Damage in HepG2 Cells[J].Journal of Medical Information,2019,32(07):72.[doi:10.3969/j.issn.1006-1959.2019.13.020]
[8]刘 阳,李新萍,吴细建.依达拉奉联合脑苷肌肽治疗重症颅脑损伤患者的疗效[J].医学信息,2019,32(22):103.[doi:10.3969/j.issn.1006-1959.2019.22.032]
LIU Yang,LI Xin-ping,WU Xi-jian.Edaravone Combined with Cerebroside Carnosine in the Treatment of Patients with Severe Head Injury[J].Journal of Medical Information,2019,32(07):103.[doi:10.3969/j.issn.1006-1959.2019.22.032]
[9]肖丽君,周 燕,汤宇飞.Nrf2-ARE信号通路在间歇性低氧胰腺组织中的作用及银杏叶提取物的干预机理[J].医学信息,2020,33(01):57.[doi:10.3969/j.issn.1006-1959.2020.01.019]
XIAO Li-jun,ZHOU Yan,TANG Yu-fei.Role of Nrf2-ARE Signaling Pathway in Intermittent Hypoxic Pancreatic Tissue and Intervention Mechanism of Ginkgo Biloba Extract[J].Journal of Medical Information,2020,33(07):57.[doi:10.3969/j.issn.1006-1959.2020.01.019]
[10]王慧婷,包蓓艳.PACAP在肾脏中的保护作用[J].医学信息,2020,33(02):40.[doi:10.3969/j.issn.1006-1959.2020.02.011]
WANG Hui-ting,BAO Bei-yan.Protective Effect of PACAP in the Kidney[J].Journal of Medical Information,2020,33(07):40.[doi:10.3969/j.issn.1006-1959.2020.02.011]