[1]王 芳,杨永秀.miRNAs在卵巢癌发病机制和治疗耐药中的作用[J].医学信息,2025,38(07):187-192.[doi:10.3969/j.issn.1006-1959.2025.07.038]
 WANG Fang,YANG Yongxiu.Role of miRNAs in the Pathogenesis and Treatment Resistance of Ovarian Cancer[J].Journal of Medical Information,2025,38(07):187-192.[doi:10.3969/j.issn.1006-1959.2025.07.038]
点击复制

miRNAs在卵巢癌发病机制和治疗耐药中的作用()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
38卷
期数:
2025年07期
页码:
187-192
栏目:
综述
出版日期:
2025-04-01

文章信息/Info

Title:
Role of miRNAs in the Pathogenesis and Treatment Resistance of Ovarian Cancer
文章编号:
1006-1959(2025)07-0187-06
作者:
王 芳12杨永秀123
1.兰州大学第一临床医学院,甘肃 兰州 730000;2.兰州大学第一医院妇产科,甘肃 兰州 730000;3.甘肃省妇科肿瘤临床研究中心,甘肃 兰州 730000
Author(s):
WANG Fang12 YANG Yongxiu123
1.The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China;2.Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China;3.Gansu Province Gynecological Tumor Clinical Res
关键词:
耐药性卵巢癌发病机制微小核糖核酸
Keywords:
Drug resistance Ovarian cancer Pathogenesis MicroRNA
分类号:
R737.31
DOI:
10.3969/j.issn.1006-1959.2025.07.038
文献标志码:
A
摘要:
卵巢癌(OC)是妇科癌症死亡的主要原因,OC早期无症状,晚期疾病症状无特异性。因此,超过75%的OC病例被诊断为晚期。据报道,miRNA等多种表观遗传因素会影响OC方面,包括起始、进展、血管生成和对治疗的耐药性。miRNAs可以调控参与OC发病机制的多种基因的表达。这种作用归因于miRNA在起始、增殖、转移中的作用。miRNA还影响关键的OC相关机制通路,例如JAK/STAT轴、NF-κB信号、MAPK 信号通路、PI3K/AKT信号通路,除了发病机制外,miRNA还可能影响OC对化疗的反应和对肿瘤细胞的生物学过程。基于此,本文拟阐明miRNAs与OC之间的联系,重点关注miRNA对OC信号通路的影响。
Abstract:
Ovarian cancer (OC) is the main cause of death in gynecological cancer. OC is asymptomatic in the early stage and has no specific symptoms in the late stage. Therefore, more than 75% of OC cases are diagnosed as advanced stage. It has been reported that a variety of epigenetic factors such as miRNAs can affect OC, including initiation, progression, angiogenesis, and resistance to treatment. MiRNAs can regulate the expression of multiple genes involved in the pathogenesis of OC. This effect is attributed to the role of miRNA in initiation, proliferation, and metastasis. MiRNAs also affect key OC-related mechanism pathways, such as JAK/STAT axis, NF-κB signaling, MAPK signaling pathway, PI3K/AKT signaling pathway. In addition to the pathogenesis, miRNAs may also affect the response of OC to chemotherapy and the biological process of tumor cells. Based on this, this paper intends to clarify the relationship between miRNAs and OC, focusing on the effect of miRNAs on OC signaling pathway.

参考文献/References:

[1]Armstrong DK,Alvarez RD,Backes FJ,et al.NCCN Guidelines Insights: Ovarian Cancer, Version 3.2022[J].Journal of the National Comprehensive Cancer Network,2022,20(9):972-980.[2]Mancari R,Cutillo G,Bruno V,et al.Development of new medical treatment for epithelial ovarian cancer recurrence[J].Gland Surgery,2020,9(4):1149-1163.[3]Kuroki L,Guntupalli SR.Treatment of epithelial ovarian cancer[J].BMJ (Clinical research ed),2020,371:m3773.[4]Ghafouri-Fard S,Shoorei H,Taheri M.miRNA profile in ovarian cancer[J].Experimental and Molecular Pathology,2020,113:104381.[5]Zhao H,Feng L,Cheng R,et al.miR-29c-3p acts as a tumorpromoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma[J].Cellular signalling,2024,113:110936.[6]Tan S,Yu H,Zhang Z,et al.Hypoxic tumour-derived exosomal miR-1225-5p regulates M2 macrophage polarisation via toll-like receptor 2 to promote ovarian cancer progress[J].Autoimmunity,2023,56(1):2281226.[7]Liu L,Ning Y,Yi J,et al.miR-6089/MYH9/β-catenin/c-Jun negative feedback loop inhibits ovarian cancer carcinogenesis and progression[J].Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie,2020,125:109865.[8]Wu X,Zhong Y,Zhang H,et al.MiR-5590-3p inhibits the proliferation and invasion of ovarian cancer cells through mediating the Wnt/β-catenin signaling pathway by targeting TNIK[J].Histology and Histopathology,2024,39(3):345-355.[9]Ling L,Wen Y,Chen H,et al.miR-134-3p driven by anisomycin impairs ovarian cancer stem cell activity through inhibiting GPR137 expression[J].Journal of Cancer,2023,14(18):3404-3015.[10]Zeng S,Liu S,Feng J,et al.MicroRNA-32 promotes ovarian cancer cell proliferation and motility by targeting SMG1[J].Oncology Letters,2020,20(1):733-741.[11]Garrido MP,Torres I,Avila A,et al.NGF/TRKA Decrease miR-145-5p Levels in Epithelial Ovarian Cancer Cells[J].Int J Mol Sci,2020,21(20):7657.[12]Zheng Q,Dai X,Fang W,et al.Overexpression of microRNA-367 inhibits angiogenesis in ovarian cancer by downregulating the expression of LPA1[J].Cancer Cell International,2020,20:476.[13]Hu X,Li J,Fu M,et al.The JAK/STAT signaling pathway: from bench to clinic[J].Signal Transduction and Targeted Therapy,2021,6(1):402.[14]Masoumi-Dehghi S,Babashah S,Sadeghizadeh M.microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways[J].Journal of Cell Communication and Signaling,2020,14(2):233-244.[15]Park GB,Kim D.MicroRNA-503-5p Inhibits the CD97-Mediated JAK2/STAT3 Pathway in Metastatic or Paclitaxel-Resistant Ovarian Cancer Cells[J].Neoplasia,2019,21(2):206-215.[16]Zhang F,Luo BH,Wu QH,et al.LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b[J].Molecular Medicine,2022,28(1):2.[17]Kamdar RD,Harrington BS,Attar E,et al.NF-κB Signaling Modulates miR-452-5p and miR-335-5p Expression to Functionally Decrease Epithelial Ovarian Cancer Progression in Tumor-Initiating Cells[J].International Journal of Molecular Sciences,2023,24(9):7826.[18]Ma H,Qi G,Han F,et al.HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway[J].Cell Communication and Signaling,2023,21(1):144.[19]Jia Y,Li J,Wang J,et al.Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway[J].Analytical Cellular Pathology,2022,2022:1732365.[20]Fu Z,Ding C,Gong W,et al.ncRNAs mediated RPS6KA2 inhibits ovarian cancer proliferation via p38/MAPK signaling pathway[J].Frontiers in Oncology,2023,13:1028301.[21]Zhao W,Han T,Li B,et al.miR-552 promotes ovarian cancer progression by regulating PTEN pathway[J].Journal of Ovarian Research,2019,12(1):121.[22]Li L,He D,Guo Q,et al.Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer[J].Journal of Nanobiotechnology,2022,20(1):50.[23]Zhang Q,Zhou X,Wan M,et al.FoxP3-miR-150-5p/3p suppresses ovarian tumorigenesis via an IGF1R/IRS1 pathway feedback loop[J].Cell Death & Disease,2021,12(3):275.[24]Yu JL,Gao X.MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy[J].European Review for Medical and Pharmacological Sciences,2020,24(4):1688-1696.[25]Fan L,Lei H,Zhang S,et al.Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10[J].Theranostics,2020,10(13):5895-5913.[26]Yao S,Gao M,Wang Z,et al.Upregulation of MicroRNA-34a Sensitizes Ovarian Cancer Cells to Resveratrol by Targeting Bcl-2[J].Yonsei Medical Journal,2021,62(8):691-701.[27]Jiang HW,Li L,Jiang P,et al.MicroRNA-489 targets XIAP to inhibit the biological progression of ovarian cancer via regulating PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition[J].European Review for Medical and Pharmacological Sciences,2020,24(8):4113-4122.[28]Shao Y,Liu X,Meng J,et al.MicroRNA-1251-5p Promotes Carcinogenesis and Autophagy via Targeting the Tumor Suppressor TBCC in Ovarian Cancer Cells[J].Molecular Therapy,2019,27(9):1653-1664.[29]Li H,Lei Y,Li S,et al.MicroRNA-20a-5p inhibits the autophagy and cisplatin resistance in ovarian cancer via regulating DNMT3B-mediated DNA methylation of RBP1[J].Reproductive Toxicology,2022,109:93-100.[30]Hu Z,Cai M,Zhang Y,et al.miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J].Cell Cycle,2020,19(2):193-206.[31]Zhou Y,Wang C,Ding J,et al.miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy[J].Cancer Cell International,2022,22(1):15.[32]Yagi T,Sawada K,Miyamoto M,et al.Continuous Administration of Anti-VEGFA Antibody Upregulates PAI-1 Secretion from Ovarian Cancer Cells via miR-143-3p Downregulation[J].Molecular Cancer Research,2023,21(10):1093-1106.[33]Bustos MA,Yokoe T,Shoji Y,et al.MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer[J].Cell & Bioscience,2023,13(1):200.[34]Suzuki H,Yokoi A,Uno K,et al.Small Extracellular Vesicles from adipose-derived stem cells suppress cell proliferation by delivering the let-7 family of microRNAs in ovarian cancer[J].Biochemical and Biophysical Research Communications,2023,680:211-219.[35]Zeng J,Li YK,Quan FF,et al.Propofol induced miR-125a-5p inhibits the proliferation and metastasis of ovarian cancer by suppressing LIN28B[J] Molecular Medicine Reports,2020,22(2):1507-1517.[36]Liu LJ,Sun XY,Yang CX,et al.MiR-10a-5p restrains the aggressive phenotypes of ovarian cancer cells by inhibiting HOXA1[J].The Kaohsiung Journal of Medical Sciences,2021,37(4):276-285.[37]Chen R,Coleborn E,Bhavsar C,et al.miR-146a inhibits ovarian tumor growth in vivo via targeting immunosuppressive neutrophils and enhancing CD8+ T cell infiltration [J].Molecular Therapy Oncolytics,2023,31:100725.[38]Javanmardi S,Abolmaali SS,Mehrabanpour MJ,et al.PEGylated nanohydrogels delivering anti-MicroRNA-21 suppress ovarian tumor-associated angiogenesis in matrigel and chicken chorioallantoic membrane models[J].BioImpacts,2022,12(5):449-461.[39]Saiyed AN,Vasavada AR,Johar SRK.Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases[J].Future Journal of Pharmaceutical Sciences,2022,8(1):24.[40]Meng Z,Lu M.RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? [J].Frontiers in Immunology,2017,8:331.[41]Tang L,Bo H.The significance of studying functional lncRNA in mouse spermatogenesis[J].Epigenomics,2022,14(7):365-368.

相似文献/References:

[1]李淑惠.鲍曼不动杆菌临床分布及耐药性分析[J].医学信息,2018,31(03):165.[doi:10.3969/j.issn.1006-1959.2018.03.061]
 LI Shu-hui.Clinical Distribution and Drug Resistance of Acinetobacter Baumannii[J].Journal of Medical Information,2018,31(07):165.[doi:10.3969/j.issn.1006-1959.2018.03.061]
[2]张丽琴,刘 婷,刘 聪,等.赣南地区临床分离菌耐药性变迁及多重耐药菌的流行变化[J].医学信息,2018,31(05):123.[doi:10.3969/j.issn.1006-1959.2018.05.043]
 ZHANG Li-qin,LIU Ting,LIU Cong,et al.Changes of Drug Resistance of Clinical Isolates and Epidemic Changes of Multidrug-resistant Bacteria in Southern Guizhou[J].Journal of Medical Information,2018,31(07):123.[doi:10.3969/j.issn.1006-1959.2018.05.043]
[3]雷 敏.不孕不育患者解脲脲支原体培养及耐药性分析[J].医学信息,2018,31(06):156.[doi:10.3969/j.issn.1006-1959.2018.06.055]
 LEI Min.Analysis of Culture and Drug Resistance of Ureaplasma Urealyticum in Infertility Patients[J].Journal of Medical Information,2018,31(07):156.[doi:10.3969/j.issn.1006-1959.2018.06.055]
[4]杨廷双.卵巢癌患者经CT检查和MRI检查的临床效果对比[J].医学信息,2018,31(07):153.[doi:10.3969/j.issn.1006-1959.2018.07.053]
 YANG Ting-shuang.Comparison of Clinical Effects between CT and MRI in Patients with Ovarian Cancer[J].Journal of Medical Information,2018,31(07):153.[doi:10.3969/j.issn.1006-1959.2018.07.053]
[5]高程凤,孙 蕊.新生儿败血症致病菌分布及耐药性分析[J].医学信息,2018,31(17):116.[doi:10.3969/j.issn.1006-1959.2018.17.035]
 GAO Cheng-feng,SUN Rui.Distribution and Drug Resistance of Pathogenic Bacteria in Neonatal Septicemia[J].Journal of Medical Information,2018,31(07):116.[doi:10.3969/j.issn.1006-1959.2018.17.035]
[6]张 美,王 欢,冯利芬.南京市江宁医院2015年~2017年血培养阳性病原菌分布及耐药性分析[J].医学信息,2018,31(20):108.[doi:10.3969/j.issn.1006-1959.2018.20.032]
 ZHANG Mei,WANG Huan,FENG Li-fen.Analysis of Distribution and Drug Resistance of Blood Culture Positive Pathogens in Jiangning Hospital of Nanjing from 2015 to 2017[J].Journal of Medical Information,2018,31(07):108.[doi:10.3969/j.issn.1006-1959.2018.20.032]
[7]于文清.下呼吸道感染病原菌分布及耐药性分析[J].医学信息,2018,31(24):74.[doi:10.3969/j.issn.1006-1959.2018.24.019]
 YU Wen-qing.Analysis of Distribution and Drug Resistance of Pathogenic Bacteria in Lower Respiratory Tract Infection[J].Journal of Medical Information,2018,31(07):74.[doi:10.3969/j.issn.1006-1959.2018.24.019]
[8]曾 江,邹 燕,刘 滨.耐甲氧西林金黄色葡萄球菌的临床分布及耐药性分析[J].医学信息,2019,32(02):148.[doi:10.3969/j.issn.1006-1959.2019.02.043]
 ZENG Jiang,ZOU Yan,LIU Bin.Clinical Distribution and Drug Resistance Analysis of Methicillin-resistant Staphylococcus Aureus[J].Journal of Medical Information,2019,32(07):148.[doi:10.3969/j.issn.1006-1959.2019.02.043]
[9]彭 杰,张 琴.儿童呼吸内科下呼吸道分离菌分布及药敏分析[J].医学信息,2019,32(03):134.[doi:10.3969/j.issn.1006-1959.2019.03.043]
 PENG Jie,ZHANG Qin.Distribution and Drug Sensitivity Analysis of Lower Respiratory Tract Isolates inChildren's Respiratory Medicine[J].Journal of Medical Information,2019,32(07):134.[doi:10.3969/j.issn.1006-1959.2019.03.043]
[10]揭嘉慧,张 颖.卵巢癌与非编码RNA研究进展[J].医学信息,2019,32(05):39.[doi:10.3969/j.issn.1006-1959.2019.05.014]
 JIE Jia-hui,ZHANG Ying.Progress in Research on Ovarian Cancer and Non-coding RNA[J].Journal of Medical Information,2019,32(07):39.[doi:10.3969/j.issn.1006-1959.2019.05.014]
[11]施后渊,雷 明.离子通道与卵巢癌的相关性研究[J].医学信息,2021,34(09):48.[doi:10.3969/j.issn.1006-1959.2021.09.012]
 SHI Hou-yuan,LEI Ming.Study on the Relationship Between Ion Channels and Ovarian Cancer[J].Journal of Medical Information,2021,34(07):48.[doi:10.3969/j.issn.1006-1959.2021.09.012]

更新日期/Last Update: 1900-01-01