[1]孟琳非,黄伟健,酆孟洁,等.基于聚类分析对慢性肺部疾病表型的研究进展[J].医学信息,2019,32(07):44-48.[doi:10.3969/j.issn.1006-1959.2019.07.015]
 MENG Lin-fei,HUANG Wei-jian,FENG Meng-jie,et al.Advances in Research on Phenotypes of Chronic Lung Diseases Based on Cluster Analysis[J].Journal of Medical Information,2019,32(07):44-48.[doi:10.3969/j.issn.1006-1959.2019.07.015]
点击复制

基于聚类分析对慢性肺部疾病表型的研究进展()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
32卷
期数:
2019年07期
页码:
44-48
栏目:
综述
出版日期:
2019-04-01

文章信息/Info

Title:
Advances in Research on Phenotypes of Chronic Lung Diseases Based on Cluster Analysis
文章编号:
1006-1959(2019)07-0044-05
作者:
孟琳非黄伟健酆孟洁王凌伟邱 晨
(深圳市人民医院院/暨南大学第二临床医学院呼吸与重症医学科,广东 深圳 518000)
Author(s):
MENG Lin-feiHUANG Wei-jianFENG Meng-jieWANG Ling-weiQIU Chen
(Shenzhen People's Hospital/Department of Respiratory and Critical Care Medicine,the Second Clinical Medical College,Jinan University,Shenzhen 518000,Guangdong,China)
关键词:
聚类分析慢性肺部疾病表型研究慢性阻塞性肺病支气管哮喘支气管扩张间质性肺疾病曲霉菌病
Keywords:
Cluster analysisChronic lung diseasePhenotypic studyChronic obstructive pulmonary diseaseBronchial asthmaBronchiectasisInterstitial lung diseaseAspergillosis
分类号:
R563
DOI:
10.3969/j.issn.1006-1959.2019.07.015
文献标志码:
A
摘要:
慢性肺部疾病包括慢性阻塞性肺疾病(COPD)、支气管哮喘、支气管扩张、间质性肺病、肺结节病、尘病和慢性肺曲霉菌病等。这些疾病具有不同的临床表型,同一治疗方案对不同表型的疗效可能存在很大区别,因此准确分析表型对制定个体化治疗方案意义重大。聚类分析是依据研究对象距离远近与相似程度的差异,将它们分成不同亚型的统计学方法。近年来,学术界发现聚类分析可用于包括慢性肺部疾病在内多种疾病的表型研究。本文对慢性肺部疾病表型的聚类分析研究作一综述,总结出该类疾病表型研究的进展和聚类分析的常用研究策略。
Abstract:
Chronic lung diseases include chronic obstructive pulmonary disease (COPD), bronchial asthma, bronchiectasis, interstitial lung disease, pulmonary sarcoidosis, dust disease, and chronic pulmonary aspergillosis. These diseases have different clinical phenotypes, and the efficacy of the same treatment regimen for different phenotypes may vary greatly, so accurate analysis of the phenotype is of great significance for the development of individualized treatment options. Cluster analysis is based on the differences in distance and similarity of the subjects, and they are divided into statistical methods of different subtypes. In recent years, academic circles have found that cluster analysis can be used for phenotypic studies of a variety of diseases including chronic lung diseases. This article reviews the cluster analysis of chronic lung disease phenotypes, and summarizes the progress of phenotypic research and the commonly used research strategies for cluster analysis.

参考文献/References:


[1]Dwyer-Lindgren L,Bertozzi-Villa A,Stubbs RW,et al.Trends and patterns of differences in chronic respiratory disease mortality among us counties,1980-2014[J].JAM,2017,318(12):1136-1149.
[2]GBD 2015 Mortality and Causes of Death Collaborators.Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015:a systematic analysis for the Global Burden of Disease Study 2015[J].Lancet,2016,388(10053):1459-1544.
[3]Roth-Walter F,Adcock IM,Benito-Villalvilla C,et al.Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper[J].Allergy,2018,74(3):432-448.
[4]林江涛.“重症哮喘诊断和处理中国专家共识”中的中国专家智慧[J].中华结核和呼吸杂志,2017,40(11):803-805.
[5]Wenzel SE.Asthma:defining of the persistent adult phenotypes[J].Lancet,2006,368(9537):804-813.
[6]Molano-Gonzalez N,Rojas M,Monsalve DM,et al.Cluster analysis of autoimmune rheumatic diseases based on autoantibodies.New insights for polyautoimmunity[J].J Autoimmun,2019(98):24-32.
[7]Jurlin L,Greguric T,Baudoin T,et al.Cluster analysis of chronic rhinosinusitis suggests gender-based differences[J].ORL J Otorhinolaryngol Relat Spec,2018,81(1):1-9.
[8]Mirza S,Benzo R.Chronic obstructive pulmonary disease phenotypes: implications for care[J].Mayo Clin Proc,2017,92(7):1104-1112.
[9]Kim MA,Shin SW,Park JS,et al.Clinical characteristics of exacerbation-prone adult asthmatics identified by cluster analysis[J].Allergy,Asthma & Immunology Research,2017,9(6):483-490.
[10]Guan WJ,Jiang M,Gao YH,et al.Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics[J].Int J Tuberc Lung Dis,2016,20(3):402-410.
[11]Fahy JV.Identifying clinical phenotypes of asthma: steps in the right direction[J].Am J Respir Crit Care Med,2010,181(4):296-297.
[12]巩璇,马建伟,董静,等.基于聚类分析的2型糖尿病中医证候规律研究[J].解放军医药杂志,2015,27(9):24-29.
[13]Haghighi B,Choi S,Choi J,et al.Imaging-based clusters in current smokers of the COPD cohort associate with clinical characteristics:the SubPopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)[J].Respiratory Research,2018,19(1):178.
[14]Gomez-Cabrero D,Menche J,Vargas C,et al.From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration[J].BMC Bioinformatics,2016,17(Suppl 15):441.
[15]Hirai K,Shirai T,Suzuki M,et al.A clustering approach to identify and characterize the asthma and chronic obstructive pulmonary disease overlap phenotype[J].Clin Exp Allergy,2017,47(11):1374-1382.
[16]Rabe KF,Hurd S,Anzueto A,et al.Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J].Am J Respir Crit Care Med,2007,176(6):532-555.
[17]Cohen JS,Miles MC,Donohue JF,et al.Dual therapy strategies for COPD: the scientific rationale for LAMA+LABA[J].Int J Chron Obstruct Pulmon Dis,2016(11):785-797.
[18]Snoeck-Stroband JB,Lapperre TS,Sterk PJ,et al.Prediction of long-term benefits of inhaled steroids by phenotypic markers in moderate-to-severe COPD:A randomized controlled trial[J].PloS One,2015,10(12):e0143793.
[19]陈建,王广发.慢性阻塞性肺疾病全球倡议2011修订版解读[J].中国医学前沿杂志(电子版),2012,4(1):42-44.
[20]Burgel PR,Paillasseur JL,Caillaud D,et al.Clinical COPD phenotypes: a novel approach using principal component and cluster analyses[J].Eur Respir J,2010,36(3):531-539.
[21]Pinto LM,Alghamdi M,Benedetti A,et al.Derivation and validation of clinical phenotypes for COPD:a systematic review[J].Respir Res,2015(16):50.
[22]Miravitlles M,Soler-Cataluna JJ,Calle M,et al.Treatment of COPD by clinical phenotypes:putting old evidence into clinical practice[J].Eur Respir J,2013,41(6):1252-1256.
[23]Miravitlles M,Calle M,Soler-Cataluna JJ.Clinical phenotypes of COPD:identification,definition and implications for guidelines[J].Arch Bronconeumol,2012,48(3):86-98.
[24]马洪明,刘晓妍,陈秋冬,等.慢性阻塞性肺疾病的临床表型[J].广东医学,2016,37(5):720-724.
[25]Kilk K,Aug A,Ottas A,et al.Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics[J].Int J Mol Sci,2018,19(3):E666.
[26]Raherison C,Ouaalaya EH,Bernady A,et al.Comorbidities and COPD severity in a clinic-based cohort[J].BMC Pulmonary Medicine,2018,18(1):117.
[27]梁振宇.关注哮喘的个体化治疗:从表型到内因型[J].中华医学杂志,2015,95(38):3099-3102.
[28]中华医学会.支气管哮喘基层诊疗指南(2018年)[J].中华全科医师杂志,2018,10(17):751-762.
[29]宁璞,郭岩斐,孙铁英,等.系统聚类分析探讨老年人呼吸道疾病的临床表型[J].中华老年医学杂志,2016,3(35):256-259.
[30]Ilmarinen P,Tuomisto LE,Niemela O,et al.Cluster analysis on longitudinal data of patients with adult-onset asthma[J].J Allergy Clin Immunol,2017,5(4):967-978.
[31]Moore WC,Meyers DA,Wenzel SE,et al.Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program[J].Am J Respir Crit Care Med,2010,181(4):315-323.
[32]Serrano-Pariente J,Rodrigo G,Fiz JA,et al.Identification and characterization of near-fatal asthma phenotypes by cluster analysis[J].Allergy,2015,70(9):1139-1147.
[33]Sendin-Hernandez MP,Avila-Zarza C,Sanz C,et al.Cluster analysis identifies 3 phenotypes within allergic asthma[J].J Allergy Clin Immunol Pract,2018,6(3):955-961.
[34]徐金富,林洁璐,瞿介明.中国支气管扩张症诊治现状及面临的挑战[J].中华结核和呼吸杂志,2017,40(1):8-10.
[35]成人支气管扩张症诊治专家共识编写组.成人支气管扩张症诊治专家共识[J].中华结核和呼吸杂志.2012,35(7):485-492.
[36]Martinez-Garcia MA,Miravitlles M.Bronchiectasis in COPD patients: more than a comorbidity?[J].Int J Chron Obstruct Pulmon Dis,2017(12):1401-1411.
[37]Aliberti S,Lonni S,Dore S,et al.Clinical phenotypes in adult patients with bronchiectasis[J].Eur Respir J,2016,47(4):1113-1122.
[38]Adegunsoye A,Oldham JM,Chung JH,et al.Phenotypic clusters predict outcomes in a longitudinal interstitial lung disease cohort[J].Chest,2018,153(2):349-360.
[39]Wang Y,Yella J,Chen J,et al.Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers[J].BMC Pulm Med,2017,17(1):133.
[40]Denning DW,Riniotis K,Dobrashian R,et al.Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: case series, proposed nomenclature change, and review[J].Clin Infect Dis,2003,37(Suppl 3):S265-S280.
[41]Ohba H,Miwa S,Shirai M,et al.Clinical characteristics and prognosis of chronic pulmonary aspergillosis[J].Respir Med,2012,106(5):724-729.
[42]Godet C,Laurent F,Beraud G,et al.Phenotyping chronic pulmonary aspergillosis by cluster analysis[J].Eur Respir J,2015,46(5):1509-1512.

相似文献/References:

[1]刘 宇,韩 雪.基于聚类分析的理气药对挖掘[J].医学信息,2019,32(03):10.[doi:10.3969/j.issn.1006-1959.2019.03.004]
 LIU Yu,HAN Xue.Drug Pairs Mining of Regulating Qi Based on Cluster Analysis[J].Journal of Medical Information,2019,32(07):10.[doi:10.3969/j.issn.1006-1959.2019.03.004]
[2]曾 频,雷佳芳,刘晓姝,等.基于词频分析透视近十年国内PICC研究[J].医学信息,2019,32(03):19.[doi:10.3969/j.issn.1006-1959.2019.03.007]
 ZENG Pin,LEI Jia-fang,LIU Xiao-shu,et al.Perspective of Domestic PICC Research in the Past Ten Years Based on Word Frequency Analysis[J].Journal of Medical Information,2019,32(07):19.[doi:10.3969/j.issn.1006-1959.2019.03.007]
[3]张 毅,周 进.半夏泻心汤临床案例用药量的聚类分析[J].医学信息,2018,31(17):140.[doi:10.3969/j.issn.1006-1959.2018.17.044]
 ZHANG Yi,ZHOU Jin.Cluster Analysis of the Dosage of Banxia Xiexin Decoction in Clinical Cases[J].Journal of Medical Information,2018,31(07):140.[doi:10.3969/j.issn.1006-1959.2018.17.044]
[4]黄俊杰,曹立幸,陈 浩,等.基于聚类和关联规则的中医治疗月经先期用药规律探讨[J].医学信息,2018,31(23):1.[doi:10.3969/j.issn.1006-1959.2018.23.001]
 HUANG Jun-jie,CAO Li-xing,CHEN Hao,et al.Discussion of the Rule of Traditional Chinese Medicine in the Treatment of Preceeded Menorrhea Based on Clustering and Association Rules[J].Journal of Medical Information,2018,31(07):1.[doi:10.3969/j.issn.1006-1959.2018.23.001]
[5]刘逢源,朱蕙霞,李 锋.国内智慧课堂研究热点透视及对医学教育领域启示[J].医学信息,2019,32(16):1.[doi:10.3969/j.issn.1006-1959.2019.16.001]
 LIU Feng-yuan,ZHU Hui-xia,LI Feng.Perspectives on the Hot Spots of Domestic Wisdom Classrooms Research and Its Implications for Medical Education[J].Journal of Medical Information,2019,32(07):1.[doi:10.3969/j.issn.1006-1959.2019.16.001]
[6]李 娜,关 红,王丽娜.2007~2017年国外社区护理研究文献计量学分析[J].医学信息,2020,33(03):24.[doi:10.3969/j.issn.1006-1959.2020.03.007]
 LI Na,GUAN Hong,WANG Li-na,et al.Bibliometric Analysis of Foreign Community Nursing Research From 2007~2017[J].Journal of Medical Information,2020,33(07):24.[doi:10.3969/j.issn.1006-1959.2020.03.007]
[7]周方圆,袁梦露.基于文献计量学的国内手机依赖研究现状和热点分析[J].医学信息,2020,33(08):1.[doi:10.3969/j.issn.1006-1959.2020.08.001]
 ZHOU Fang-yuan,YUAN Meng-lu.Analysis of Current Status and Hot Spots of Domestic Mobile Phone Dependence Research Based on Bibliometrics[J].Journal of Medical Information,2020,33(07):1.[doi:10.3969/j.issn.1006-1959.2020.08.001]
[8]姜荣荣,李娉婷,杨 涛.基于无监督学习的心系疾病核心症状群提取研究[J].医学信息,2022,35(20):1.[doi:10.3969/j.issn.1006-1959.2022.20.001]
 JIANG Rong-rong,LI Ping-ting,YANG Tao.Research on Core Symptom Cluster Extraction of Heart Disease Based on Unsupervised Learning[J].Journal of Medical Information,2022,35(07):1.[doi:10.3969/j.issn.1006-1959.2022.20.001]
[9]任 远,吴梦蝶,刘光丽,等.移动医疗研究现状和趋势的文献计量学分析[J].医学信息,2021,34(03):12.[doi:10.3969/j.issn.1006-1959.2021.03.004]
 REN Yuan,WU Meng-die,LIU Guang-li,et al.A Bibliometric Analysis of the Current Status and Trends of Mobile Medical Research[J].Journal of Medical Information,2021,34(07):12.[doi:10.3969/j.issn.1006-1959.2021.03.004]
[10]贾 慧,李春梅,彭 鸿,等.基于CiteSpaceV的国内护士情绪智力研究热点知识图谱分析[J].医学信息,2023,36(10):30.[doi:10.3969/j.issn.1006-1959.2023.10.007]
 JIA Hui,LI Chun-mei,PENG Hong,et al.Knowledge Mapping Analysis of Domestic Nurses’ Emotional Intelligence Research Hotspots Based on CiteSpaceV[J].Journal of Medical Information,2023,36(07):30.[doi:10.3969/j.issn.1006-1959.2023.10.007]

更新日期/Last Update: 2019-04-01