[1]马定虎,侯 进,宋裕虎,等.氧化钨纳米材料制备及其光生物效应中抗肿瘤作用的研究[J].医学信息,2021,34(01):61-63.[doi:10.3969/j.issn.1006-1959.2021.01.017]
 MA Ding-hu,HOU Jin,SONG Yu-hu,et al.Research on Preparation of Tungsten Trioxide Nanomaterials and Its Anti-tumor Effect in Photobiological Effect[J].Medical Information,2021,34(01):61-63.[doi:10.3969/j.issn.1006-1959.2021.01.017]
点击复制

氧化钨纳米材料制备及其光生物效应中抗肿瘤作用的研究()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
34卷
期数:
2021年01期
页码:
61-63
栏目:
综述
出版日期:
2021-01-01

文章信息/Info

Title:
Research on Preparation of Tungsten Trioxide Nanomaterials and Its Anti-tumor Effect in Photobiological Effect
文章编号:
1006-1959(2021)01-0061-03
作者:
马定虎侯 进宋裕虎
(西安医学院基础医学部,陕西 西安 710021)
Author(s):
MA Ding-huHOU JinSONG Yu-huet al.
(Department of Basic Medicine,Xi’an Medical University,Xi’an 710021,Shaanxi,China)
关键词:
氧化钨纳米材料抗肿瘤光生物效应
Keywords:
Tungsten trioxide nanomaterialsAnti-tumorPhotobiological effect
分类号:
TQ136.13
DOI:
10.3969/j.issn.1006-1959.2021.01.017
文献标志码:
A
摘要:
氧化钨是一种多功能无机氧化物材料,氧化钨纳米材料由于其独特纳米特性被广泛应用于临床,制备方法包括水热法、气相法和高温固相还原法。研究表明,其不仅在检测和储能等方面有卓越性能,且良好的光热效应在激光照射下可以诱导多种癌细胞凋亡。本文就氧化钨纳米材料的制备方法、光生物效应作一综述,以期为其临床应用提供参考。
Abstract:
Tungsten trioxide is a multifunctional inorganic oxide material. Tungsten trioxide nanomaterials are widely used in clinics due to their unique nano characteristics. The preparation methods include hydrothermal, gas phase and high temperature solid phase reduction methods. Studies have shown that it not only has excellent performance in detection and energy storage, but also has a good photothermal effect that can induce apoptosis of a variety of cancer cells under laser irradiation. This article reviews the preparation methods and photobiological effects of tungsten trioxide nanomaterials in order to provide references for their clinical applications.

参考文献/References:

[1]Yamada S,Yoshida S,Kitao M.Infrared-Absorption of Colored and Bleached Films of Tungsten-Oxide[J].Solid State Ionics,1990,40(1):487-490. [2]Takeda H,Adachi K.Near infrared absorption of tungsten oxide nanoparticle dispersions[J].Journal of the American Ceramic Society,2007(90):4059-4061. [3]Sharker SM,Kim SM,Lee JE,et al.Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy[J].Journal of Controlled Release,2015(217):211-220. [4]Zhang T,Su JZ,Guo LJ.Hierarchical architecture of WO3 nanosheets by self-assembly of nanorods for photoelectrochemical applications[J].Crystengcomm,2016(18):665-669. [5]Hou J,Du Y,Zhang T,et al.PEGylated(NH4)xWO3 nanorod mediated rapid photonecrosis of breast cancer cells[J].Nanoscale,2019,11(21):10209-10219. [6]Satrialdi,Munechika R,Biju V,et al.The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter[J].Chemical Communications,2020,56(45):6153-6153. [7]Luftner D,Schneeweiss A,Hartkopf AD,et al.Update Breast Cancer 2020 Part 2-Advanced Breast Cancer:New Treatments and Implementation of Therapies with Companion Diagnostics[J].Geburtshilfe Und Frauenheilkunde,2020(80):391-398. [8]Dutz A,Agolli L,Baumann M,et al.Early and late side effects,dosimetric parameters and quality of life after proton beam therapy and IMRT for prostate cancer:a matched-pair analysis[J].Acta Oncologica,2020,58(6):608-609. [9]Zhou SR,Yang CG,Guo LX,et al.Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity[J].Chemical Communications,2019,55(59):8615-8618. [10]Zhou J,Wang QL,Geng SZ,et al.Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging-Guiding photodynamic therapy/photothermal therapy[J].Materials Science&Engineering C-Materials for Biological Applications,2019(102):541-551. [11]Song X,Chen Q,Liu Z.Recent advances in the development of organic photothermal nano-agents[J].Nano Research,2015(8):340-354. [12]Zharov VP,Galitovskaya EN,Johnson C,et al.Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters:Potential for cancer therapy[J].Lasers in Surgery and Medicine,2005,37(3):219-226. [13]Zhang M,Wang W,Wu F,et al.Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice[J].Carbon,2017(123):70-83. [14]Yang K,Hu L,Ma X,et al.Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles[J].Advanced Materials,2012,24(14):1868-1872. [15]Zhang J,Zhang ST,Zhao ZY,et al.Structural and electronic properties of tungsten oxides under high pressures[J].Journal of Physics-Condensed Matter,2020,32(8):085403. [16]Qiu J,Xiao Q,Zheng X,et al.Single W18O49 nanowires:A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy[J].Nano Research,2015(8):3580-3590. [17]Wen L,Chen L,Zheng S,et al.Ultrasmall Biocompatible WO3-x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers[J].Advanced Materials,2016,28(25):5072-5079. [18]Kalluru P,Vankayala R,Chiang C-S,et al.Photosensitization of Singlet Oxygen and In Vivo Photodynamic Therapeutic Effects Mediated by PEGylated W18O49 Nanowires[J].Angewandte Chemie-International Edition,2013,52(47):12332-12336. [19]Zhang Y,Li B,Cao Y,et al.Na0.3WO3 nanorods:a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells[J].Dalton Transactions,2015,44(6):2771-2779. [20]Xu W,Meng Z,Yu N,et al.PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells[J].Rsc Advances,2015(5):7074-7082. [21]Li CP,Kang CY,Huang SL,et al.Near infrared radiation shielding using CsxWO3 nanoparticles for infrared mini light-emitting diodes[J].Materials Letters,2020. [22]Chala TF,Wu CM,Motora KG.RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum(UV,visible,and near-infrared)photocatalysis[J].Journal of the Taiwan Institute of Chemical Engineers,2019(102):465-474. [23]Yong Y,Zhou L,Zhang S,et al.Gadolinium polytungstate nanoclusters:a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer[J].Npg Asia Materials,2016:8. [24]Macharia DK,Tian Q,Chen L,et al.PEGylated(NH4)xWO3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor[J].Journal of Photochemistry and Photobiology Biology,2017(174):10-17. [25]Chen Z,Wang Q,Wang H,et al.Ultrathin PEGylated W18O49 Nanowires as a New 980 nm-Laser-Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo[J].Advanced Materials,2013(25):2095-2100.

相似文献/References:

[1]薛 玲,刘祥东,付思雨,等.硒多糖对MCF-7乳腺癌小鼠的抗肿瘤作用研究[J].医学信息,2019,32(01):73.[doi:10.3969/j.issn.1006-1959.2019.01.024]
 XUE Ling,LIU Xiang-dong,FU Si-yu,et al.Anti-tumor Effect of Selenium Polysaccharide on MCF-7 Breast Cancer Mice[J].Medical Information,2019,32(01):73.[doi:10.3969/j.issn.1006-1959.2019.01.024]
[2]秦 魏,王 蓉,李 畅,等.Hsp90N抑制剂的虚拟筛选[J].医学信息,2020,33(19):78.[doi:10.3969/j.issn.1006-1959.2020.19.022]
 QIN Wei,WANG Rong,LI Chang,et al.Virtual Screening of Hsp90N Inhibitors[J].Medical Information,2020,33(01):78.[doi:10.3969/j.issn.1006-1959.2020.19.022]
[3]徐 静.PDCA在静脉药物配置中心提高抗肿瘤药物配置质量中的应用[J].医学信息,2021,34(15):162.[doi:10.3969/j.issn.1006-1959.2021.15.045]
 XU Jing.Application of PDCA in Intravenous Drug Distribution Center to Improve the Quality of Anti-tumor Drug Configuration[J].Medical Information,2021,34(01):162.[doi:10.3969/j.issn.1006-1959.2021.15.045]
[4]赵一丹,杨 静.夏枯草主要化学成分抗肺癌作用机制研究进展[J].医学信息,2022,35(09):42.[doi:10.3969/j.issn.1006-1959.2022.09.010]
 ZHAO Yi-dan,YANG Jing.Research Progress on Anti-lung Cancer Mechanism of Main Chemical Constituents of Spica Prunellae[J].Medical Information,2022,35(01):42.[doi:10.3969/j.issn.1006-1959.2022.09.010]
[5]李开双,罗茜怡,农志欢,等.鸡血藤活性成分及抗肿瘤作用研究[J].医学信息,2023,36(07):176.[doi:10.3969/j.issn.1006-1959.2023.07.036]
 LI Kai-shuang,LUO Xi-yi,NONG Zhi-huan,et al.Research Progress on Active Components and Anti-tumor Effects of Suberect Spatholobus Stem[J].Medical Information,2023,36(01):176.[doi:10.3969/j.issn.1006-1959.2023.07.036]

更新日期/Last Update: 1900-01-01