[1]刘昌靓,田 齐.3D打印假体骨融合及其对骨肿瘤术后长期稳定性的评价[J].医学信息,2022,35(11):40-43.[doi:10.3969/j.issn.1006-1959.2022.11.012]
 LIU Chang-liang,TIAN Qi.3D Printing Prosthesis Bone Fusion and its Evaluation of Long-term Stability After Bone Tumor Surgery[J].Medical Information,2022,35(11):40-43.[doi:10.3969/j.issn.1006-1959.2022.11.012]
点击复制

3D打印假体骨融合及其对骨肿瘤术后长期稳定性的评价()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年11期
页码:
40-43
栏目:
综述
出版日期:
2022-06-01

文章信息/Info

Title:
3D Printing Prosthesis Bone Fusion and its Evaluation of Long-term Stability After Bone Tumor Surgery
文章编号:
1006-1959(2022)11-0040-04
作者:
刘昌靓田 齐
(1.陕西中医药大学第二临床医学院,陕西 咸阳 712000;2.新疆医科大学第一附属医院骨肿瘤外科,新疆 乌鲁木齐 830000)
Author(s):
LIU Chang-liangTIAN Qi
(1.The Second Clinical Medical College of Shaanxi University of Chinese Medicine,Xianyang 712000,Shaanxi,China;2.Department of Bone Oncology,the First Affiliated Hospital of Xinjiang Medical University,Urumqi 830000,Xinjiang,China)
关键词:
恶性骨肿瘤3D打印长期稳定性功能化多孔结构
Keywords:
Malignant bone tumor3D printingLong-term stabilityFunctionalPorous structure
分类号:
R738.1
DOI:
10.3969/j.issn.1006-1959.2022.11.012
文献标志码:
A
摘要:
3D打印技术在骨肿瘤外科的应用是目前骨科领域的研究热点,包括3D打印假体多孔结构(PS)或与抗肿瘤药物及生物因子等结合为功能化假体。本文现对3D打印技术在骨肿瘤方面应用的报道,分析其在临床中应用的可行性与优异性。
Abstract:
The application of 3D printing technology in bone tumor surgery is a research hotspot in the field of orthopedics, including 3D printing prosthesis porous structure (PS) or combined with antitumor drugs and biological factors as functional prosthesis. This paper reports the application of 3D printing technology in bone tumors, and analyzes the feasibility and superiority of its application in clinical practice.

参考文献/References:

[1]Zhang Y,Zhang L,Sun R,et al.A new 3D printed titanium metal trabecular bone reconstruction system for early osteonecrosis of the femoral head[J].Medicine (Baltimore),2018,97(26):e11088.[2]Genova T,Roato I,Carossa M,et al.Advances on Bone Substitutes through 3D Bioprinting[J].Int J Mol Sci,2020,21(19):7012.[3]Billiet T,Vandenhaute M,Schelfhout J,et al.A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J].Biomaterials,2012,33(26):6020-6041.[4]Carpenter RD,Klosterhoff BS,Torstrick FB,et al.Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth:A finite element analysis comparing titanium and PEEK[J].J Mech Behav Biomed Mater,2018,80:68-76.[5]Liu Y,Lim J,Teoh SH.Review:development of clinically relevant scaffolds for vascularised bone tissue engineering[J].Biotechnol Adv,2013,31(5):688-705.[6]Bahraminasab M.Challenges on optimization of 3D-printed bone scaffolds[J].Biomed Eng Online,2020,19(1):69.[7]张兰,王翔,刘军,等.3D打印钛合金骨小梁多孔结构的拉伸性能[J].中国组织工程研究,2020,24(22):3498-3503.[8]Lutzweiler G,Barthes J,Koenig G,et al.Modulation of Cellular Colonization of Porous Polyurethane Scaffolds via the Control of Pore Interconnection Size and Nanoscale Surface Modifications[J].ACS Appl Mater Interfaces,2019,11(22):19819-19829.[9]Do AV,Khorsand B,Geary SM,et al.3D Printing of Scaffolds for Tissue Regeneration Applications[J].Adv Healthc Mater,2015,4(12):1742-1762.[10]Gu BK,Choi DJ,Park SJ,et al.3D Bioprinting Technologies for Tissue Engineering Applications[J].Adv Exp Med Biol,2018,1078:15-28.[11]Ran Q,Yang W,Hu Y,et al.Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J].J Mech Behav Biomed Mater,2018,84:1-11.[12]Turnbull G,Clarke J,Picard F,et al.3D bioactive composite scaffolds for bone tissue engineering[J].Bioact Mater,2017,3(3):278-314.[13]Dhiman S,Sidhu SS,Singh P,et al.Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique:a review[J] Rapid Prototyping Journal,2019,25(7):1266-1284.[14]Wei J,Jia J,Wu F,et al.Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration[J].Biomaterials,2010,31(6):1260-1269.[15]Bandyopadhyay A,Shivaram A,Tarafder S,et al.In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants[J].Ann Biomed Eng,2017,45(1):249-260.[16]Palmquist A,Snis A,Emanuelsson L,et al.Long-term biocompatibility and osseointegration of electron beam melted,free-form-fabricated solid and porous titanium alloy:experimental studies in sheep[J].J Biomater Appl,2013,27(8):1003-1016.

相似文献/References:

[1]樊 笑,王佳友,鲍树森,等.3D打印技术在骨肿瘤科中的应用[J].医学信息,2018,31(06):1.[doi:10.3969/j.issn.1006-1959.2018.06.001]
 FAN Xiao,WANG Jia-you,BAO Shu-sen,et al.Application of 3D Printing Technology in Bone Oncology[J].Medical Information,2018,31(11):1.[doi:10.3969/j.issn.1006-1959.2018.06.001]
[2]宗 菲,荣 丽.3D打印在微创牙髓治疗中的应用[J].医学信息,2018,31(06):4.[doi:10.3969/j.issn.1006-1959.2018.06.002]
 ZONG Fei,RONG Li.Application of 3D Printing in the Treatment of Minimally Invasive Pulp[J].Medical Information,2018,31(11):4.[doi:10.3969/j.issn.1006-1959.2018.06.002]
[3]李 滔,李彦林,余 洋.计算机导航技术在前交叉韧带重建中的应用[J].医学信息,2018,31(06):7.[doi:10.3969/j.issn.1006-1959.2018.06.003]
 LI Tao,LI Yan-lin,Yu Yang.The Application of Computer Navigation in the Reconstruction of Anterior Cruciate Ligament[J].Medical Information,2018,31(11):7.[doi:10.3969/j.issn.1006-1959.2018.06.003]
[4]王 丽,刘啸晨.自体牙移植结合正畸治疗1例牙齿缺损报告[J].医学信息,2018,31(24):188.[doi:10.3969/j.issn.1006-1959.2018.24.060]
[5]陈 铭,范海泉,黄海讯,等.应用3D打印结合人工股骨头置换治疗高龄不稳定股骨转子间骨折疗效观察[J].医学信息,2019,32(06):110.[doi:10.3969/j.issn.1006-1959.2019.06.034]
 CHEN Ming,FAN Hai-quan,HUANG Hai-xun,et al.Therapeutic Effect of 3D Printing Combined with Artificial Femoral Head Replacement for the Treatment of Unstable Intertrochanteric Fractures in Elderly Patients[J].Medical Information,2019,32(11):110.[doi:10.3969/j.issn.1006-1959.2019.06.034]
[6]梁 周,黄 政,杨德炎,等.3D打印技术在股骨粗隆间骨折手术中的应用[J].医学信息,2019,32(19):68.[doi:10.3969/j.issn.1006-1959.2019.19.020]
 LIANG Zhou,HUANG Zheng,YANG De-yan,et al.Application of 3D Printing Technology in the Operation of Intertrochanteric Fracture[J].Medical Information,2019,32(11):68.[doi:10.3969/j.issn.1006-1959.2019.19.020]
[7]罗 纬,陈向深,蒋 瑷,等.不同测量方法评估位点保存术后牙槽嵴高度变化[J].医学信息,2019,32(16):90.[doi:10.3969/j.issn.1006-1959.2019.16.027]
 LUO Wei,CHEN Xiang-shen,JIANG Ai,et al.Changes in Alveolar Ridge Height after Preservation of Different Measurement Methods[J].Medical Information,2019,32(11):90.[doi:10.3969/j.issn.1006-1959.2019.16.027]
[8]郜 鹏.股骨粗隆间骨折的治疗研究[J].医学信息,2022,35(16):163.[doi:10.3969/j.issn.1006-1959.2022.16.042]
 GAO Peng.Study on Treatment of Intertrochanteric Fracture of Femur[J].Medical Information,2022,35(11):163.[doi:10.3969/j.issn.1006-1959.2022.16.042]
[9]苟永胜,伍 蓉,李海波,等.3D打印技术在运动医学骨科临床教学中的应用[J].医学信息,2019,32(24):1.[doi:10.3969/j.issn.1006-1959.2019.24.001]
 GOU Yong-sheng,WU Rong,LI Hai-bo,et al.Application of 3D Printing Technology in Clinical Teaching of Sports Medicine Orthopedics[J].Medical Information,2019,32(11):1.[doi:10.3969/j.issn.1006-1959.2019.24.001]
[10]党靖刚,魏星辉,刘文文,等.个体化3D打印人工椎体肿瘤患者随访流程及存在问题[J].医学信息,2020,33(15):187.[doi:10.3969/j.issn.1006-1959.2020.15.061]
 DANG Jing-gang,WEI Xing-hui,LIU Wen-wen,et al.Individualized 3D Printing Artificial Vertebral Body Tumor Patient Follow-up Process and Problems[J].Medical Information,2020,33(11):187.[doi:10.3969/j.issn.1006-1959.2020.15.061]

更新日期/Last Update: 1900-01-01