[1]徐 薇,王 强,贺 媛,等.自噬在低氧致脑部疾病中的作用[J].医学信息,2022,35(19):148-151,179.[doi:10.3969/j.issn.1006-1959.2022.19.043]
 XU Wei,WANG Qiang,HE Yuan,et al.The Role of Autophagy in Brain Injury Induced by Hypoxia[J].Journal of Medical Information,2022,35(19):148-151,179.[doi:10.3969/j.issn.1006-1959.2022.19.043]
点击复制

自噬在低氧致脑部疾病中的作用()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年19期
页码:
148-151,179
栏目:
综述
出版日期:
2022-10-01

文章信息/Info

Title:
The Role of Autophagy in Brain Injury Induced by Hypoxia
文章编号:
1006-1959(2022)19-0148-05
作者:
徐 薇王 强贺 媛
(1.内蒙古科技大学包头医学院,内蒙古 包头 014060;2.内蒙古科技大学包头医学院内蒙古自治区低氧转化医学重点实验室,内蒙古 包头 014060;3.内蒙古科技大学包头医学院基础医学与法医学院,内蒙古 包头 014060;4.首都医科大学宣武医院低氧适应转化医学北京重点实验室,北京 100053;5.泰国格勒大学国际学院公共健康学院,曼谷 10220)
Author(s):
XU WeiWANG QiangHE Yuanet al.
(1.Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014060,Inner Mongolia,China;2.Baotou Medical College,Inner Mongolia University of Science and Technology,Inner Mongolia Autonomous Region Key Laboratory of Hypoxic Trans
关键词:
自噬低氧脑损伤神经退行性疾病
Keywords:
AutophagyHypoxiaBrain injuryNeurodegenerative disease
分类号:
R743.31
DOI:
10.3969/j.issn.1006-1959.2022.19.043
文献标志码:
A
摘要:
自噬是细胞内物质自我降解的一种过程,也被称作Ⅱ型程序性死亡。当受到低氧、饥饿、生长因子缺乏、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤等外界刺激影响时,自噬发挥着维持细胞稳态的重要调节作用。近年来,随着对低氧致脑损伤发病机制的研究,自噬在低氧致脑部疾病中的作用逐渐成为了人们关注的热点。本文从自噬的作用机制、低氧对脑部疾病的影响、自噬与脑部疾病的关系等方面进行综述,以期为低氧致脑部疾病的预防与治疗提供一定的理论基础。
Abstract:
Autophagy is a process of self-degradation of intracellular substances, also known as type Ⅱ programmed death. When affected by external stimuli such as hypoxia, starvation, absence of growth factors, damage of organelles, protein misfolding or aggregation, and DNA damage, autophagy plays an important regulatory role in maintaining cellular homeostasis. In recent years, with the research of the pathogenesis of hypoxic-induced brain injury, the role of autophagy in hypoxic-induced brain injury has gradually become the focus of attention. This article reviews the mechanism of autophagy, the effect of hypoxia on brain diseases, and the relationship between autophagy and brain diseases, in order to provide a theoretical basis for the prevention and treatment of brain diseases caused by hypoxia.

参考文献/References:

[1]许娜,冯凌云,于燕.低氧通过TLR2-MyD88信号通路诱导BV2细胞M1/M2型极化[J].滨州医学院学报,2021,44(6):401-406.[2]杨万超,刘翔,陈剑峰,等.高碳酸血症对严重低氧缺血大鼠脑损伤的影响[J].临床麻醉学杂志,2017,33(5):473-477.[3]张岩.复方景川片调控低氧诱导因子-1α表达对大鼠缺血性脑损伤的保护作用[J].现代药物与临床,2019,34(12):3506-3511.[4]董允,赵秀丽,黄登亮,等.NLRX1对低氧诱导的小胶质细胞极化的影响[J].解放军医学院学报,2021,42(11):1172-1179.[5]党英男,贾舒婷,赵伟,等.红景天对脑缺血-低氧大鼠血流动力学及神经元凋亡作用机制[J].脑与神经疾病杂志,2021,29(12):727-732.[6]Williams R.Circulation Research "In This Issue" Anthology[J].Circulation Research,2017,120(12):e58-e84.[7]苏波,龙曼云,郑静,等.miR-30e-3p调控的自噬对缺血缺氧致H9c2心肌细胞损伤的保护作用[J].广西医科大学学报,2020,37(5):784-789.[8]Adams RA,Victor M,Ropper AH.Trastornosmetab′olicos adquiridos del sistema nervioso Acquired metabolicnervous system disorders[J].Principios de Neurolog′?覦a,1999:961-967.[9]Shukitt-Hale B,Kadar T,Marlowe BE,et al.Morphological alterations in the hippocampus following hypobaric hypoxia[J].Hum Exp Toxicol,1996,15:312-319.[10]Regard M,Oelz O,Brugger P,et al.Persistent cognitive impairment in climbers after repeated exposure to extreme altitude[J].Neurology,1989,39:210-213.[11]巩生辉.自噬介导低氧下神经干细胞的增殖及机制研究[D].南宁:广西医科大学,2018.[12]龙禹哲.骨髓间充质干细胞源外泌体通过传递miR-19b抑制缺氧复氧状态H9c2心肌细胞自噬和线粒体自噬[D].贵州:遵义医科大学,2019.[13]于加倍.低氧环境下抗阻练习对骨骼肌萎缩的影响及Akt-FoxO1-MuRF1/Atrogin-1通路调控机制[D].北京:北京体育大学,2019.[14]刘恒炜.低氧介导自噬在子宫内膜异位症发生发展中的作用及机制研究[D].武汉:华中科技大学,2019.[15]Ke Q,Costa M.Hypoxia-Inducible Factor-1(HIF-1)[J].Mol Pharmacol,2006,70(5):1469-1480.[16]李永金,杨开勇,张谊,等.低氧诱导因子-1在脑损伤中的双向调节作用[J].中国细胞生物学学报,2015,37(6):906-910.[17]杨曌.脑缺血缺氧中缺氧诱导因子HIF-1α对小胶质细胞自噬调节的机制研究[D].重庆:第三军医大学,2014.[18]Zhang H,Bosch-Marce M,Shimoda LA,et al.Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J].J Biol Chem,2008,283(16):10892-10903.[19]Bellot G,Garcia-MedinaR,Gounon P,et al.Hypoxia-induced autophagy is mediated through HIF-induction of BNIP3 and BNIP3L via their BH3-domains[J].Mol Cell Biol,2009,29(10):2570-2581.[20]Hamacher-Brady A,Brady NR,Gottlieb RA.Enhancing macroautophagy protects against ischemia/reperfusioninjury in cardiac myocytes[J].J Biol Chem,2006,281(40):29776-29787.[21]符玉水,符元证,霍开明,等.香兰素通过抑制自噬及PINK1信号通路改善新生大鼠低氧缺血性脑损伤与炎症反应[J].脑与神经疾病杂志,2021,29(8):463-469.[22]施晓晨.三氯生通过诱导自噬加强巨噬细胞清除胞内寄生菌机制研究[D].长春:吉林大学,2016.[23]刘文玲,贺修胜.哺乳动物自噬的调节因子[J].中南医学科学杂志,2019,47(3):333-336.[24]汤思思.mTOR上调PFKFB3的分子机制及其功能研究[D].合肥:安徽医科大学,2019.[25]徐琛莹.人结肠癌细胞中雌激素受体β与mTORC1和mTORC2通路的关系研究[D].上海:上海交通大学,2013.[26]陈继军,王倩梅,赵鹏,等.褪黑素通过AMPK-mTOR信号通路介导的自噬在神经元缺血缺氧损伤中的作用研究[J].解放军医药杂志,2019,31(10):10-16.[27]Jawhari S,Ratinaud MH,Verdier M.Glioblastoma, hypoxia and autophagy:a survival-prone ’ménage-à-trois’[J].Cell Death Dis,2016,7(10):e2434. [28]李岱.颅脑创伤后高表达miR-124-3p的小胶质细胞外泌体调控神经元自噬在神经功能损伤中的作用和机制研究[D].天津:天津医科大学,2019.[29]陆陈晨.MORN4和NR4A2影响A549细胞线粒体自噬的分子机制研究[D].济南:山东大学,2019.[30]田洪哲,曾力.低氧诱导因子在缺血再灌注损伤中的作用[J].第二军医大学学报,2016,37(4):488-492.[31]化维,朱嫚嫚,刘加涛.基于低糖低血清营养胁迫构建内质网应激和自噬模型及其评价[J].安徽医科大学学报,2021,56(11):1779-1784.[32]张雅楠.ADEVs通过抑制c-myc表达调控脑出血大鼠内质网应激和自噬的实验研究[D].唐山:华北理工大学,2021.[33]高经华,刘亚伟,吉晶晶,等.热打击可通过调控内质网应激通路促进神经细胞凋亡[J].南方医科大学学报,2021,41(5):702-709.[34]Iurlaro R,Cristina MP.Cell death induced by endoplasmic reticulum stress[J].FEBS J,2016,283(14):2640-2652.[35]杨阳.氧化应激偶联内质网应激在氟中毒大鼠生殖损伤中的作用及机制[D].郑州:郑州大学,2015.[36]王伟伟.内质网应激—自噬对脑缺血再灌注能量代谢障碍与氧化应激的影响[D].长春:吉林大学,2014.[37]Carloni S,Buonocore G,Balduini W.Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury[J]. Neurobiol Dis,2008,32(3):329-339.[38]Chauhan G,Roy K,Kumar G,et al.Distinct influence of COX-1 and COX-2 on neuroinflammatory response and associated cognitive deficits during high altitude hypoxia[J].Neuropharmacology,2018,146:138-148.[39]周娟平,苏刚,陈丽霞,等.线粒体相关内质网膜在神经退行性疾病中的研究进展[J].中国细胞生物学学报,2020,42(8):1465-1471.[40]周巍,刘鹏,刘一民,等.microRNA-221对MPP+诱导的帕金森病模型细胞凋亡和自噬的影响[J].贵阳医学院学报,2018,43(6):661-666.[41]Peers C,Pearson HA,Boyle JP.Hypoxia and Alzheimer’s disease[J].Essays Biochem,2007,43:153-164.[42]李墨香,郝倩,刘莹,等.淀粉样前体蛋白基因多态性与阿尔兹海默病的关系[J].中国细胞生物学学报,2018,40(9):1599-1605.[43]Zhou X,Yang C,Liu Y,et al.Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease[J].Neural Regeneration Research,2014,9(1):92-100.[44]邹文颖.自噬调控机制对阿尔兹海默病的影响[J].中风与神经疾病杂志,2015,32(7):658-660.[45]Cho MH,Cho K,Kang HJ,et al.Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome[J].Autophagy,2014,10(10):1761-1775.[46]Shang YC,Chong ZZ,Wang S,et al.Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1,the PI3K/mToR pathway,Bad,and Bcl-xL[J].Aging(Albany NY),2012,4(3):187-201.[47]Ravikumar B,Vacher C,Berger Z,et al.Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease[J].Nat Genet,2004,36(6):585-595.[48]Qin ZH,Wang Y,Kazantsev A,et al.Autophagy Regulates the Processing of Amino Terminal Huntingtin Fragments[J].Hum Mol Genet,2003,12(24):3231-3244. [49]Gómez‐Santos C,Ferrer I,Antonio F,et al.Dopamine induces autophagic cell death and α‐synuclein increase in human neuroblastoma SH‐SY5Y cells[J].J Neurosci Res,2003,73(3):341-350.[50]Redmann M,Wani WY,Volpicelli-Daley L,et al.Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils[J].Redox Biology,2017,11:429-437.[51]Mclelland GL,Soubannier V,Chen CX,et al.Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control[J].Embo Journal,2014,33(4):282-295.[52]薛皓.低氧促进胶质母细胞瘤自噬和侵袭迁移过程中相关microRNAs的作用机制研究[D].济南:山东大学,2016.[53]李咏梅.HIF-1α对低氧环境中脑胶质瘤细胞的作用及相关机制研究[D].昆明:昆明医科大学,2015.

相似文献/References:

[1]朱晓晓,张 顺,蔡 挺.镍暴露相关的肺癌发生分子机制研究[J].医学信息,2018,31(17):4.[doi:10.3969/j.issn.1006-1959.2018.17.002]
 ZHU Xiao-xiao,ZHANG Shun,CAI Ting.Molecular Mechanism of Lung Cancer Related to Nickel Exposure[J].Journal of Medical Information,2018,31(19):4.[doi:10.3969/j.issn.1006-1959.2018.17.002]
[2]潘建伟,虞 琳.人巨细胞病毒感染与细胞自噬的关系[J].医学信息,2018,31(18):26.[doi:10.3969/j.issn.1006-1959.2018.18.010]
 PAN Jian-wei,YU Lin.Relationship between Human Cytomegalovirus Infection and Autophagy[J].Journal of Medical Information,2018,31(19):26.[doi:10.3969/j.issn.1006-1959.2018.18.010]
[3]邵 磊,赵春燕,王贤良.自噬信号通路在冠脉支架后血管狭窄中的研究进展[J].医学信息,2018,31(21):28.[doi:10.3969/j.issn.1006-1959.2018.21.009]
 SHAO Lei,ZHAO Chun-yan,WANG Xian-liang.Progress of the Research on Autophagy Signal Pathway in Coronary Artery Stenosis after Stent[J].Journal of Medical Information,2018,31(19):28.[doi:10.3969/j.issn.1006-1959.2018.21.009]
[4]陈卉彬,简 洁.九龙藤总黄酮通过lncRNA MIAT调控自噬对大鼠急性心肌梗死的影响[J].医学信息,2022,35(13):78.[doi:10.3969/j.issn.1006-1959.2022.13.017]
 CHEN Hui-bin,JIAN Jie.Effect of Bauhinia Championii Flavone Regulate Autophagy Against Acute Myocardial Infarction in Rats Through lncRNA MIAT[J].Journal of Medical Information,2022,35(19):78.[doi:10.3969/j.issn.1006-1959.2022.13.017]
[5]杨巧侠,王成果,王元欣.乌司他丁预处理对HepG2细胞氧化损伤保护作用的研究[J].医学信息,2019,32(13):72.[doi:10.3969/j.issn.1006-1959.2019.13.020]
 YANG Qiao-xia,WANG Cheng-guo,WANG Yuan-xin.Protective Effect of Ulinastatin Pretreatment on Oxidative Damage in HepG2 Cells[J].Journal of Medical Information,2019,32(19):72.[doi:10.3969/j.issn.1006-1959.2019.13.020]
[6]乔秋江,庞 琦.基于自噬相关基因构建的预后模型对脑胶质瘤免疫微环境的影响[J].医学信息,2022,35(17):1.[doi:10.3969/j.issn.1006-1959.2022.17.001]
 QIAO Qiu-jiang,PANG Qi.Effect of Prognostic Model Based on Autophagy-related Genes on Immune Microenvironment of Glioma[J].Journal of Medical Information,2022,35(19):1.[doi:10.3969/j.issn.1006-1959.2022.17.001]
[7]林 艳,林 倩,刘婷莉,等.重组IL-12对人乳腺癌细胞自噬的研究[J].医学信息,2019,32(23):64.[doi:10.3969/j.issn.1006-1959.2019.23.018]
 LIN Yan,LIN Qian,LIU Ting-li,et al.Study on Autophagy of Human Breast Cancer Cells by Recombinant IL-12[J].Journal of Medical Information,2019,32(19):64.[doi:10.3969/j.issn.1006-1959.2019.23.018]
[8]李宜桐,李 勇.低氧性肺动脉高压肺血管重塑机制的研究[J].医学信息,2020,33(15):26.[doi:10.3969/j.issn.1006-1959.2020.15.010]
 LI Yi-tong,LI Yong.Research on Mechanism of Pulmonary Vascular Remodeling in Hypoxic Pulmonary Hypertension[J].Journal of Medical Information,2020,33(19):26.[doi:10.3969/j.issn.1006-1959.2020.15.010]
[9]韩燕红,张瑞霞.PGC-1α的生理特性及其影响因素[J].医学信息,2021,34(02):42.[doi:10.3969/j.issn.1006-1959.2021.02.012]
 HAN Yan-hong,ZHANG Rui-xia.Physiological Characteristics of PGC-1α and Its Influencing Factors[J].Journal of Medical Information,2021,34(19):42.[doi:10.3969/j.issn.1006-1959.2021.02.012]
[10]陈 婷,刘金彦.PI3K/Akt/mTOR通路与足细胞自噬在糖尿病肾病肾功能修复中的研究[J].医学信息,2022,35(22):170.[doi:10.3969/j.issn.1006-1959.2022.22.042]
 CHEN Ting,LIU Jin-yan.The study of PI3K/Akt/mTOR Pathway and Podocyte Autophagy in Renal Function Repair of Diabetic Nephropathy[J].Journal of Medical Information,2022,35(19):170.[doi:10.3969/j.issn.1006-1959.2022.22.042]

更新日期/Last Update: 1900-01-01