参考文献/References:
[1]钟玉婷,钟坚.人工智能发展水平测度指标体系及其应用[J].社会科学动态,2022(6):54-59.[2]Johnson M,Albizri A,Simsek S.Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis[J].Annals of Operations Research,2020,308(1-2):1-31.[3]王立石,宋洁,张洁.基于人工智能的智慧医疗对专利保护政策的挑战及应对[J].软件,2019,40(8):171-174.[4]王嘉良.基于Web of Science可视化分析人工智能在乳腺癌领域的研究热点[J].河南医学研究,2021,30(29):5391-5396.[5]Davuluri S,Kishore DR.Cancer Clumps Detection using Image Processing Based on Cell Counting and Artificial Neural Network Techniques[J].International Journal of Engineering and Advanced Technology,2019,9(2):5124-5126.[6]马梦伟,秦耿耿,徐维敏,等.基于X线及超声乳腺影像报告和数据系统构建机器学习模型预测乳腺癌分子分型[J].中国医学影像技术,2020,36(12):1814-1819.[7]张永梅,陈彤,马健喆,等.基于难样本挖掘和深度学习的乳腺癌检测方法[J].计算机工程与设计,2021,42(6):1727-1734.[8]Vijayakumar K,Kadam VJ,Sharma SK.Breast cancer diagnosis using multiple activation deep neural network[J].Concurrent Engineering,2021,29(3):275-284.[9]Khan S,Islam N,Jan Z, et al.A novel deep learning based framework for the detection and classification of breast cancer using transfer learning[J].Pattern Recognition Letters,2019,125:1-6.[10]左文思,金林原,李芬穗.超声造影对不同分子分型乳腺癌的诊断价值[J].分子影像学杂志,2019,42(4):423-429.[11]江泽飞,许凤锐.乳腺癌精准治疗:20年探索历程[J].中国实用外科杂志,2020,40(1):83-88.[12]Wang X,Guo Y,Wang Y,et al.Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns[J].Neural Computing and Applications,2019,31(4):1069-1081.[13]Dharani NP,Bojja P,Kumari PR,et al.Detection of Breast Cancer by Thermal Based Sensors using Multilayered Neural Network Classifier[J]. International Journal of Engineering and Advanced Technology,2019,9(2):5615-5618.[14]任鸿昌,杨建武,李成林,等.联合应用彩超、钼靶、MRI对早期乳腺癌的诊断价值[J].武警医学,2021,32(3):201-204. [15]邵旭辉,张军胜,张华文,等.动态增强MRI、钼靶对致密型乳腺病变的诊断效能对比研究[J].中国CT和MRI杂志,2021,19(12):87-89.[16]Yala A,Lehman C,Schuster T,et al.A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction[J].Radiology,2019,292(1):60-66.[17]淦凤萍,肖雪花,胡美娟.人工智能超声对乳腺癌早期诊断及预后评估的价值分析[J].癌症进展,2022,20(14):1480-1486.[18]Frazer H,Qin AK,Pan H,et al.Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset[J].Journal of Medical Imaging and Radiation Oncology,2021,65(5):529-537.[19]Pacilè S,Lopez J,Chone P,et al.Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool[J].Radiology:Artificial Intelligence,2020,2(6):1-9.[20]Wu N,Phang J,Park J,et al.Deep Neural Networks Improve Radiologists’ Performance inBreast Cancer Screening.[J].IEEE Transactions on Medical Imaging,2020,39(4):1184-1194.
相似文献/References:
[1]董 云.SPECT/CT 双时相99mTc- MIBI断层显像
在乳腺癌诊断中的应用[J].医学信息,2018,31(05):147.[doi:10.3969/j.issn.1006-1959.2018.05.053]
DONG Yun.Application of SPECT/CT Dual-phase 99mTc-MIBI Tomography in the Diagnosis of Breast Cancer[J].Journal of Medical Information,2018,31(05):147.[doi:10.3969/j.issn.1006-1959.2018.05.053]
[2]李建辉,祝旭龙.乳腺癌的治疗管理——把好生活质量关[J].医学信息,2018,31(13):1.[doi:10.3969/j.issn.1006-1959.2018.13.001]
[3]杨玉峰,李 强,曲国红,等.乳腺癌术前巴德枪穿刺检测ER、PR的临床研究[J].医学信息,2018,31(13):163.[doi:10.3969/j.issn.1006-1959.2018.13.050]
YANG Yu-feng,LI Qiang,QU Guo-hong,et al.Clinical Study on Preoperative ER and PR Detection of Bard Gun Puncture in Breast Cancer[J].Journal of Medical Information,2018,31(05):163.[doi:10.3969/j.issn.1006-1959.2018.13.050]
[4]刘 曼,厉玛倩倩,徐润润,等.延续性护理对乳腺癌术后化疗患者生活质量与
健康知识水平的影响[J].医学信息,2018,31(16):178.[doi:10.3969/j.issn.1006-1959.2018.16.057]
LIU Man,LIMA Qian-qian,XU Run-run,et al.Effect of Continuous Nursing on Quality of Life and Health Knowledge of Postoperative Chemotherapy Patients with Breast Cancer[J].Journal of Medical Information,2018,31(05):178.[doi:10.3969/j.issn.1006-1959.2018.16.057]
[5]张艳萍,曹 玉,孙国平.服用阿司匹林对乳腺癌患者生存获益的Meta分析[J].医学信息,2018,31(20):72.[doi:10.3969/j.issn.1006-1959.2018.20.021]
ZHANG Yan-ping,CAO Yu,SUN Guo-ping.Meta Analysis of the Survival Benefit of Patients with Breast Cancer Treated with Aspirin[J].Journal of Medical Information,2018,31(05):72.[doi:10.3969/j.issn.1006-1959.2018.20.021]
[6]钟 磊,谢海燕,林 霖.电化学发光免疫分析技术检测肿瘤标志物在乳腺癌诊断中的应用[J].医学信息,2018,31(20):155.[doi:10.3969/j.issn.1006-1959.2018.20.048]
ZHONG Lei,XIE Hai-yan,LIN Lin.Application of Electrochemiluminescence Immunoassay for Detection of Tumor Markers in Diagnosis of Breast Cancer[J].Journal of Medical Information,2018,31(05):155.[doi:10.3969/j.issn.1006-1959.2018.20.048]
[7]胡平华,黄 勤,李志华.含卡培他滨方案一线或后线治疗晚期乳腺癌的效果对比[J].医学信息,2018,31(22):142.[doi:10.3969/j.issn.1006-1959.2018.22.041]
HU Ping-hua,HUANG Qin,LI Zhi-hua.Comparison of the Efficacy of Capecitabine Regimen in the Treatment of Advanced Breast Cancer with First-line or Posterior Line Therapy[J].Journal of Medical Information,2018,31(05):142.[doi:10.3969/j.issn.1006-1959.2018.22.041]
[8]阙海涛,曹 斌,秦志刚.EGFL7在乳腺癌中的研究进展[J].医学信息,2018,31(23):32.[doi:10.3969/j.issn.1006-1959.2018.23.010]
QUE Hai-tao,CAO Bin,QIN Zhi-gang.Research Progress of EGFL7 in Breast Cancer[J].Journal of Medical Information,2018,31(05):32.[doi:10.3969/j.issn.1006-1959.2018.23.010]
[9]张文婧,宋 冰.HER-2阳性乳腺癌分子靶向治疗进展[J].医学信息,2018,31(24):42.[doi:10.3969/j.issn.1006-1959.2018.24.012]
ZHANG Wen-jing,SONG Bing.Progress in Molecular Targeted Therapy for HER-2 Positive Breast Cancer[J].Journal of Medical Information,2018,31(05):42.[doi:10.3969/j.issn.1006-1959.2018.24.012]
[10]张 乐,徐胜昔,郭翔取,等.Tyrer-Cuzick模型联合SNPs位点在江西地区乳腺癌诊断中应用研究[J].医学信息,2018,31(24):131.[doi:10.3969/j.issn.1006-1959.2018.24.038]
ZHANG Le,XU Sheng-xi,GUO Xiang-qu,et al.Application of Tyrer-Cuzick Model Combined with SNPs Locus in the Diagnosis of Breast Cancer in Jiangxi Area[J].Journal of Medical Information,2018,31(05):131.[doi:10.3969/j.issn.1006-1959.2018.24.038]
[11]张 虎,张 涛,徐 芳,等.MRI在乳腺癌诊治中的研究进展[J].医学信息,2022,35(10):62.[doi:10.3969/j.issn.1006-1959.2022.10.015]
ZHANG Hu,ZHANG Tao,XU Fang,et al.Research Progress of MRI in Diagnosis and Treatment of Breast Cancer[J].Journal of Medical Information,2022,35(05):62.[doi:10.3969/j.issn.1006-1959.2022.10.015]