[1]张艺博,文 静,何 燕.长爪沙鼠氧化应激水平与血糖及胰岛素抵抗的相关性分析[J].医学信息,2021,34(12):1-4.[doi:10.3969/j.issn.1006-1959.2021.12.001]
 ZHANG Yi-bo,WEN Jing,HE Yan.Correlation Analysis of Oxidative Stress Level with Blood Sugar and Insulin Resistance in Eriones Unguiculatus[J].Medical Information,2021,34(12):1-4.[doi:10.3969/j.issn.1006-1959.2021.12.001]
点击复制

长爪沙鼠氧化应激水平与血糖及胰岛素抵抗的相关性分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
34卷
期数:
2021年12期
页码:
1-4
栏目:
出版日期:
2021-06-15

文章信息/Info

Title:
Correlation Analysis of Oxidative Stress Level with Blood Sugar and Insulin Resistance in Eriones Unguiculatus
文章编号:
1006-1959(2021)12-0001-04
作者:
张艺博文 静何 燕
(首都医科大学公共卫生学院流行病与卫生统计学系,北京 100069)
Author(s):
ZHANG Yi-boWEN JingHE Yan
(Department of Epidemiology and Biostatistics,School of Public Health,Capital Medical University,Beijing 100069,China)
关键词:
长爪沙鼠氧化应激胰岛素抵抗骨骼肌
Keywords:
Eriones unguiculatusOxidative stressInsulin resistanceSkeletal muscle
分类号:
R587.1
DOI:
10.3969/j.issn.1006-1959.2021.12.001
文献标志码:
A
摘要:
目的 探讨长爪沙鼠氧化应激指标与血糖、胰岛素抵抗、骨骼肌指标的关系,明确氧化应激与糖尿病之间的相互作用。方法 选取长爪沙鼠145只,测量体重;摘眼球取血检测空腹血糖(FPG)、空腹胰岛素(FIN)、超氧化物歧化酶(SOD);取腓肠肌检测腓肠肌重量及腓肠肌内的糖原储存;计算稳态模型胰岛素抵抗指数(HOMA-IR)以及定量胰岛素敏感性检测指数(QUICKI),并对氧化应激与血糖、胰岛素抵抗指标、骨骼肌指标进行Spearman相关性分析及多元线性回归分析。结果 ①不同月龄间长爪沙鼠SOD活性比较,差异有统计学意义(P<0.05),且3~18月龄间长爪沙鼠SOD水平逐渐升高,18~24月龄间长爪沙鼠SOD水平有所降低;Spearman相关性分析显示,月龄和SOD活性水平呈正相关(r=0.361,P<0.05);多元线性回归分析显示,月龄与SOD水平存在关联,即随着月龄的增加,SOD水平升高。②不同月龄间长爪沙鼠FPG、HOMA-IR、QUICKI比较,差异有统计学意义(P<0.05);Spearman相关分析显示,月龄与胰岛素抵抗指数呈负相关(r=-0.303,P<0.05),与胰岛素敏感性呈正相关(r=0.303,P<0.05),月龄与空腹血糖无相关性(r=-0.051,P>0.05);多元线性回归分析显示,SOD与FPG、胰岛素敏感性存在关联,即随着SOD水平升高,氧化水平降低,空腹血糖降低,胰岛素敏感性升高。③不同月龄长爪沙鼠骨骼肌质量、骨骼肌糖原储存比较,差异有统计学意义(P<0.05);相关性及多元线性分析均显示SOD水平与骨骼肌质量、骨骼肌糖原无相关性。结论 氧化应激与胰岛素抵抗存在关联,但与骨骼肌指标间的关联证据不足。
Abstract:
Objective To explore the relationship between oxidative stress indicators and blood glucose, insulin resistance, and skeletal muscle indicators in eriones unguiculatus, and to clarify the interaction between oxidative stress and diabetes.Methods A total of 145 eriones unguiculatus were selected and their weights were measured; the eyes were removed and blood was taken to detect fasting blood glucose (FPG), fasting insulin (FIN), and superoxide dismutase(SOD);The gastrocnemius muscle was taken to measure the weight of the gastrocnemius muscle and the glycogen storage in the gastrocnemius; the homeostasis model insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity test index (QUICKI) were calculated, and the oxidative stress and blood glucose, insulin resistance indicators, and skeletal muscle were calculated. Spearman correlation analysis and multiple linear regression analysis were performed on the indicators.Results ①There was a statistically significant difference in the SOD activity of eriones unguiculatus between different months of age(P<0.05).The SOD level of eriones unguiculatus gradually increased from 3 to 18 months of age, and the SOD level of gerbils from 18 to 24 months of age decreased. Spearman correlation analysis showed that month age and SOD activity levels were positively correlated(r=0.361, P<0.05);Multiple linear regression analysis showed that there was a correlation between the age of the month and the level of SOD, that was, as the age of the month increased, the level of SOD increased.②Comparison of FPG, HOMA-IR, and QUICKI of Mongolian gerbils between different months of age, the difference was statistically significant(P<0.05);Spearman correlation analysis showed that month age was negatively correlated with insulin resistance index(r=-0.303,P<0.05), and positively correlated with insulin sensitivity(r=0.303, P<0.05).There was no correlation between month age and fasting blood glucose(r=-0.051, P>0.05);Multiple linear regression analysis showed that SOD is associated with FPG and insulin sensitivity, that was, as SOD levels increased, oxidation levels decreased, fasting blood glucose decreased, and insulin sensitivity increased.③Comparing the skeletal muscle mass and skeletal muscle glycogen storage of eriones unguiculatus at different months of age, the difference was statistically significant (P<0.05);Correlation and multivariate linear analysis showed that there was no correlation between SOD level and skeletal muscle mass and skeletal muscle glycogen.Conclusion There is an association between oxidative stress and insulin resistance, but there is insufficient evidence for the association with skeletal muscle indicators.

参考文献/References:

[1]Grieco GE,Brusco N,Licata G,et al.Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes[J].Int J Mol Sci,2019,20(24):6358. [2]Nowotny K,Jung T,Hohn A,et al.Advanced glycation end products and oxidative stress in type 2 diabetes mellitus[J].Biomolecules,2015,5(1):194-222. [3]Kattoor AJ,Pothineni NVK,Palagiri D,et al.Oxidative Stress in Atherosclerosis[J].Curr Atheroscler Rep,2017,19(11):42. [4]Liu HT,Gao Y.Efficacy of short-term intensive treatment with insulin pump to improve islet beta-cell function in newly diagnosed type 2 diabetes via inhibition of oxidative stress[J].Exp Ther Med,2019,18(3):2293-2298. [5]Rehman K,Akash MSH.Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus:How Are They Interlinked[J].J Cell Biochem,2017,118(11):3577-3585. [6]孙磊,李方晖.高强度间歇训练对老龄大鼠骨骼肌减少症及某些脂肪细胞因子和炎症因子的影响[J].中国运动医学杂志,2019,38(8):691-699. [7]Dal S,Jeandidier N,Seyfritz E,et al.Oxidative stress status and liver tissue defenses in diabetic rats during intensive subcutaneous insulin therapy[J].Exp Biol Med(Maywood),2016,241(2):184-192. [8]于顺,倪月秋.自噬、氧化应激与2型糖尿病的关系[J].沈阳医学院学报,2018,20(1):93-96. [9]云博,吴景东.氧化应激与相关疾病及其作用机制[J].沈阳医学院学报,2018,20(3):272-276. [10]Gerber PA,Rutter GA.The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus[J].Antioxid Redox Signal,2017,26(10):501-518. [11]马香香,李亚坤,陈慧晓,等.血糖波动对糖尿病大鼠氧化应激及神经病变的影响[J].河南医学研究,2016(6):966-968. [12]崔艳荣,周琦,朱向东.大柴胡汤对2型糖尿病模型大鼠氧化应激致胰岛β细胞损伤的影响[J].世界科学技术,2020,22(5):1458-1463. [13]邓聪,杨志敏,徐福平,等.骨骼肌细胞氧化应激损伤与黄芪多糖的干预研究[J].中医药信息,2019,36(3):80-82. [14]Doherty TJ.Invited review:Aging and sarcopenia[J].J Appl Physiol (1985),2003,95(4):1717-1727. [15]陈莹晖,李裕明,林松挺,等.高糖诱导氧化应激对胰岛细胞功能的影响[J].海南医学院学报,2012,18(1):12-14. [16]Dokken BB,Saengsirisuwan V,Kim JS,et al.Oxidative stress-induced insulin resistance in rat skeletal muscle:role of glycogen synthase kinase-3[J].Am J Physiol Endocrinol Metab,2008,294(3):E615-E621.

相似文献/References:

[1]刘 璐,秦新月.阿尔茨海默病患者血尿酸水平变化的研究[J].医学信息,2018,31(02):96.[doi:10.3969/j.issn.1006-1959.2018.02.033]
 LIU Lu,QIN Xin-yue.Study on the Changes of Serum Uric Acid in Alzheimer 's Disease Patients[J].Medical Information,2018,31(12):96.[doi:10.3969/j.issn.1006-1959.2018.02.033]
[2]李 铎,王建华.盐酸曲美他嗪片辅助治疗对冠心病伴心力衰竭患者氧化应激、心肌功能的影响[J].医学信息,2018,31(10):126.[doi:10.3969/j.issn.1006-1959.2018.10.041]
 LI Duo,WANG Jian-hua.Effect of Trimetazidine Hydrochloride Tablets Adjuvant Therapy on Oxidative Stress and Myocardial Function in Patients with Coronary Heart Disease Complicated with Heart Failure[J].Medical Information,2018,31(12):126.[doi:10.3969/j.issn.1006-1959.2018.10.041]
[3]何 丽.应激性高血糖与急性心肌梗死的机制研究[J].医学信息,2022,35(10):74.[doi:10.3969/j.issn.1006-1959.2022.10.018]
 HE Li.Mechanism of Stress Hyperglycemia and Acute Myocardial Infarction[J].Medical Information,2022,35(12):74.[doi:10.3969/j.issn.1006-1959.2022.10.018]
[4]张剑君.2型糖尿病参与血管衰老的机制[J].医学信息,2022,35(11):37.[doi:10.3969/j.issn.1006-1959.2022.11.011]
 ZHANG Jian-jun.The Mechanism of Type 2 Diabetes Mellitus in Vascular Aging[J].Medical Information,2022,35(12):37.[doi:10.3969/j.issn.1006-1959.2022.11.011]
[5]李 璟.右美托咪定减轻氧化应激改善H9C2细胞缺氧/复氧损伤[J].医学信息,2018,31(14):95.[doi:10.3969/j.issn.1006-1959.2018.14.027]
 LI Jing.Dexmedetomidine Alleviated Oxidative Stress and Improved Hypoxia/Reoxygenation Injury in H9C2 Cells[J].Medical Information,2018,31(12):95.[doi:10.3969/j.issn.1006-1959.2018.14.027]
[6]陈艳玲.内镜下止血术联合奥曲肽治疗上消化道出血的临床效果[J].医学信息,2022,35(11):141.[doi:10.3969/j.issn.1006-1959.2022.11.037]
 CHEN Yan-ling.Clinical Effect of Endoscopic Hemostasis Combined with Octreotide in the Treatment of Upper Gastrointestinal Bleeding[J].Medical Information,2022,35(12):141.[doi:10.3969/j.issn.1006-1959.2022.11.037]
[7]李志俊,王 利,王 浩.姜黄素改善糖尿病肾病的作用机制研究[J].医学信息,2018,31(24):35.[doi:10.3969/j.issn.1006-1959.2018.24.010]
 LI Zhi-jun,WANG Li,WANG Hao.Study on the Mechanism of Curcumin in Improving Diabetic Nephropathy[J].Medical Information,2018,31(12):35.[doi:10.3969/j.issn.1006-1959.2018.24.010]
[8]朱明辉,朱骏昌,殷珺妹,等.心肌缺血患者再灌注损伤的发生机制及临床治疗[J].医学信息,2022,35(13):49.[doi:10.3969/j.issn.1006-1959.2022.13.010]
 ZHU Ming-hui,ZHU Jun-chang,YIN Jun-mei,et al.Mechanism and Clinical Treatment of Reperfusion Injury in Patients with Myocardial Ischemia[J].Medical Information,2022,35(12):49.[doi:10.3969/j.issn.1006-1959.2022.13.010]
[9]付晓春,沈小莉,李红群,等.雷公藤多苷促进斑马鱼肝脏损伤和氧化应激的实验研究[J].医学信息,2019,32(05):79.[doi:10.3969/j.issn.1006-1959.2019.05.024]
 FU Xiao-chun,SHEN Xiao-li,LI Hong-qun,et al.Experimental Study on the Effects of Tripterygium Glycosides on Liver Damage and Oxidative Stress in Zebrafish[J].Medical Information,2019,32(12):79.[doi:10.3969/j.issn.1006-1959.2019.05.024]
[10]李 燕,杨 柳,朱诗苗.有氧运动联合高压氧治疗脑卒中后认知功能障碍的疗效及对氧化应激的影响[J].医学信息,2022,35(17):114.[doi:10.3969/j.issn.1006-1959.2022.17.030]
 LI Yan,YANG Liu,ZHU Shi-miao.Effect of Aerobic Exercise Combined with Hyperbaric Oxygen on Cognitive Dysfunction After Stroke and its Effect on Oxidative Stress[J].Medical Information,2022,35(12):114.[doi:10.3969/j.issn.1006-1959.2022.17.030]

更新日期/Last Update: 1900-01-01