[1]王 涛,潘 鑫.胰岛素分泌细胞诱导过程中miRNA-mRNA调控网络的生物信息学分析[J].医学信息,2023,36(18):8-14.[doi:10.3969/j.issn.1006-1959.2023.18.002]
 WANG Tao,PAN Xin.Bioinformatic Analyses of miRNA-mRNA Regulatory Network During Differentiation of Insulin-producing Cells[J].Journal of Medical Information,2023,36(18):8-14.[doi:10.3969/j.issn.1006-1959.2023.18.002]
点击复制

胰岛素分泌细胞诱导过程中miRNA-mRNA调控网络的生物信息学分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年18期
页码:
8-14
栏目:
生物信息学
出版日期:
2023-09-15

文章信息/Info

Title:
Bioinformatic Analyses of miRNA-mRNA Regulatory Network During Differentiation of Insulin-producing Cells
文章编号:
1006-1959(2023)18-0008-07
作者:
王 涛潘 鑫
(锦州医科大学医疗学院医学系,辽宁 锦州 121013)
Author(s):
WANG TaoPAN Xin
(Medicine Department of Medical Treatment College,Jinzhou Medical University,Jinzhou 121013,Liaoning,China)
关键词:
微小RNA胚胎干细胞胰岛素分泌细胞
Keywords:
microRNAEmbryonic stem cellsInsulin-secreting cells
分类号:
R342.2
DOI:
10.3969/j.issn.1006-1959.2023.18.002
文献标志码:
A
摘要:
目的 探讨人胚胎干细胞(hESCs)向胰岛素分泌细胞(IPCs)诱导分化过程中基因表达的差异,并构建miRNA-mRNA调控网络。方法 选择GEO数据库内的GSE42094数据集作为研究对象,应用GEO2R分析差异表达基因,对其进行GO功能和KEGG路径以及蛋白互作网络分析,选用miRTarBase数据库预测其靶miRNA,对miRNA-mRNA调控网络进行可视化,并采用文献数据验证。结果 共得到差异表达基因188个,选取诱导后显著下调基因共21个,分析发现POU5F1、DNMT3B和NANOG 3个基因集中在“基因表达调控”,且下调基因在“胞核内”比较集中;通过查找靶miRNA,发现miR-335-5p能够调控POU5F1、DNMT3B、NANOG、FAM124B和LECT1 5个基因的表达;验证发现有24个miRNA能够被文献数据验证。结论 基于显著下调基因构建的miRNA-mRNA调控网络参与干细胞诱导分化进程并发挥重要作用。
Abstract:
Objective To identify differentially expressed genes during differentiation of human embryonic stem cells (hESCs) into insulin-producing cells, and to construct the miRNA-mRNA regulatory network.Methods The datasets GSE42094 from GEO were employed in this study, differentially expressed genes were analyzed using GEO2R, and the GO function, KEGG pathway and protein interaction network were analyzed. The miRTarBase database was used to predict its target miRNA, and the miRNA-mRNA regulatory network was visualized and verified by literature data.Results A total of 188 differentially expressed genes were identified and 21 down-regulated genes after the induction were selected as candidate genes. POU5F1, DNMT3B and NANOG were "regulation of gene expression" and the significant term for all down-regulated genes were "nucleus". By searching for target miRNAs, it was found that miR-335-5p could regulate the expression of POU5F1, DNMT3B, NANOG, FAM124B and LECT1; validation found that 24 miRNAs could be verified by literature data.Conclusion The miRNA-mRNA regulatory network based on down-regulated genes may play a key role during induction of insulin-producing cells.

参考文献/References:

[1]Rahman MH,Peng S,Hu X,et al.A Network-Based Bioinformatics Approach to Identify Molecular Biomarkers for Type 2 Diabetes that Are Linked to the Progression of Neurological Diseases[J].Int J Environ Res Public Health,2020,17:1035.[2]Ma X,Jain NM,Hitscherich P,et al.Stem Cell-Derived Insulin-Producing Cells in 3D Engineered Tissue in a Perfusion Flow Bioreactor[J].Tissue Eng Part A,2021,27(17-18):1182-1191.[3]Refaie AF,Elbassiouny BL,Kloc M,et al.From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations[J].Front Immunol,2021,12:690623.[4]C?覾mara BOS,Bertassoli BM,Ocarino NM,et al.Differentiation of Mesenchymal Stem Cells from Humans and Animals into Insulin-producing Cells: An Overview In Vitro Induction Forms[J].Curr Stem Cell Res Ther,2021,16(6):695-709.[5]Abazari MF,Zare Karizi S,Hajati-Birgani N,et al.PHBV nanofibers promotes insulin-producing cells differentiation of human induced pluripotent stem cells[J].Gene,2021,768:145333.[6]袁长深,容伟明,卢智贤,等.基于生物信息学构建骨肉瘤miRNA-mRNA的调控网络[J].中国组织工程研究,2021,25(17):2740-2746.[7]Lu Y,Li Y,Li G,et al.Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis[J].Molecular Medicine Reports,2020,22:1868-1882.[8]梁学振,谢国鑫,李嘉程,等.基于miRNA-mRNA调控网络股骨头坏死的关键基因筛选与分析[J].中国组织工程研究,2022,26(11):1800-1807.[9]Chen BZ,Yu SL,Singh S,et al.Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells[J].Cell Biol Int,2011,35(1):29-37.[10]Mahmoud H,Elham H.Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation[J].J Cell Physiol,2019,234(6):7811-7827.[11]Verdelli C,Morotti A,Tavanti GS,et al.The Core Stem Genes SOX2, POU5F1/OCT4, and NANOG Are Expressed in Human Parathyroid Tumors and Modulated by MEN1, YAP1, and β-catenin Pathways Activation[J].Biomedicines,2021,9:637. [12]Choi SH,Kim JK,Jeon HY,et al.OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells[J].Mol Cells,2019,42(2):135-142.[13]Fogarty NME,McCarthy A,Snijders KE,et al.Genome editing reveals a role for OCT4 in human embryogenesis[J].Nature,2017,550(7674):67-73.[14]Kuang Y,Wang Y,Cao X,et al.New prognostic factors and scoring system for patients with acute myeloid leukemia[J].Oncol Lett,2021,22(6):823.[15]Yu X,Han Y,Liu S,et al.Analysis of Genetic Alterations Related to DNA Methylation in Testicular Germ Cell Tumors Based on Data Mining[J].Cytogenet Genome Res,2021,161(6-7):382-394.[16]Lai SC,Su YT,Chi CC,et al.DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation[J].J Exp Clin Cancer Res,2019,38(1):474. [17]Gagliardi M,Strazzullo M,Matarazzo MR.DNMT3B Functions: Novel Insights From Human Disease[J].Front Cell Dev Biol,2018,6:140. [18]Cieslar-Pobuda A,Ahrens TD,Caglayan S,et al.DNMT3B deficiency alters mitochondrial biogenesis and α-ketoglutarate levels in human embryonic stem cells[J].Stem Cells,2020,38:1409-1422.[19]Tsuyuguchi Y,Nakasa T,Ishikawa M,et al.The Benefit of Minced Cartilage Over Isolated Chondrocytes in Atelocollagen Gel on Chondrocyte Proliferation and Migration[J].Cartilage,2021,12(1):93-101.[20]Zhu S,Qiu H,Bennett S,et al.Chondromodulin-1 in health, osteoarthritis, cancer, and heart disease[J].Cell Mol Life Sci,2019,76(22):4493-4502.[21]Sabouri E,Rajabzadeh A,Enderami SE,et al.The Role of MicroRNAs in the Induction of Pancreatic Differentiation[J].Current Stem Cell Research & Therapy,2021,16(2):145-154.

相似文献/References:

[1]梁 晓,马天仲.miRNAs及其靶基因在子宫内膜容受性中的作用[J].医学信息,2020,33(02):25.[doi:10.3969/j.issn.1006-1959.2020.02.008]
 LIANG Xiao,MA Tian-zhong.Study on the Role of miRNAs and its Target Genes in Endometrial Receptivity[J].Journal of Medical Information,2020,33(18):25.[doi:10.3969/j.issn.1006-1959.2020.02.008]
[2]赵振宇.miR-33表达与炎症反应的关系[J].医学信息,2020,33(02):73.[doi:10.3969/j.issn.1006-1959.2020.02.020]
 ZHAO Zhen-yu.Relationship Between miR-33 Expression and Inflammatory Response[J].Journal of Medical Information,2020,33(18):73.[doi:10.3969/j.issn.1006-1959.2020.02.020]
[3]张 明.miRNA及lncRNA在糖尿病肾病中的作用机制及临床诊断应用[J].医学信息,2020,33(21):58.[doi:10.3969/j.issn.1006-1959.2020.21.017]
 ZHANG Ming.The Mechanism of miRNA and lncRNA in Diabetic Nephropathy and Clinical Diagnosis Application[J].Journal of Medical Information,2020,33(18):58.[doi:10.3969/j.issn.1006-1959.2020.21.017]
[4]宋 硕,张 颖,陈国通,等.细胞周期蛋白D与女性恶性肿瘤的关系[J].医学信息,2021,34(10):36.[doi:10.3969/j.issn.1006-1959.2021.10.010]
 SONG Shuo,ZHANG Ying,CHEN Guo-tong,et al.The Relationship Between Cyclin D and Female Malignant Tumors[J].Journal of Medical Information,2021,34(18):36.[doi:10.3969/j.issn.1006-1959.2021.10.010]
[5]罗婵娟.子宫内膜癌组织中miR-143的表达及与预后的相关性分析[J].医学信息,2022,35(15):75.[doi:10.3969/j.issn.1006-1959.2022.15.016]
 LUO Chan-juan.Expression of miR-143 in Endometrial Carcinoma Tissues and its Correlation with Prognosis[J].Journal of Medical Information,2022,35(18):75.[doi:10.3969/j.issn.1006-1959.2022.15.016]
[6]郭居斗,杜振宗,宋剑非.LncRNA作为ceRNA调控miRNA在NSCLC中的作用[J].医学信息,2022,35(15):148.[doi:10.3969/j.issn.1006-1959.2022.15.035]
 GUO Ju-dou,DU Zhen-zong,SONG Jian-fei.The Role of LncRNA as ceRNA in Regulating miRNA in NSCLC[J].Journal of Medical Information,2022,35(18):148.[doi:10.3969/j.issn.1006-1959.2022.15.035]
[7]陈明昊,青玉凤,苟婉星,等.绝经后骨质疏松症相关长链非编码RNA的研究进展[J].医学信息,2022,35(22):160.[doi:10.3969/j.issn.1006-1959.2022.22.040]
 CHEN Ming-hao,QING Yu-feng,GOU Wan-xing,et al.Research Progress of Long Non-coding RNA Related to Postmenopausal Osteoporosis[J].Journal of Medical Information,2022,35(18):160.[doi:10.3969/j.issn.1006-1959.2022.22.040]
[8]冯 登,程 鹏,王 毅,等.miRNA在动脉粥样硬化中调控血管平滑肌细胞的研究进展[J].医学信息,2023,36(06):176.[doi:10.3969/j.issn.1006-1959.2023.06.040]
 FENG Deng,CHENG Peng,WANG Yi,et al.Research Progress of miRNA Regulating Vascular Smooth Muscle Cells in Atherosclerosis[J].Journal of Medical Information,2023,36(18):176.[doi:10.3969/j.issn.1006-1959.2023.06.040]
[9]李 丹,吴伟东,古佳升,等.miR-134对食管鳞状细胞癌细胞增殖、迁移和侵袭的影响及其分子机制[J].医学信息,2023,36(08):59.[doi:10.3969/j.issn.1006-1959.2023.08.012]
 LI Dan,WU Wei-dong,GU Jia-sheng,et al.Effects of miR-134 on Proliferation,Migration and Invasion of Esophageal Squamous Cell Carcinoma Cells and its Molecular Mechanism[J].Journal of Medical Information,2023,36(18):59.[doi:10.3969/j.issn.1006-1959.2023.08.012]
[10]张立洁,彭 泉,芦东徽,等.HCV相关肝硬化关键基因的交互分析[J].医学信息,2023,36(11):10.[doi:10.3969/j.issn.1006-1959.2023.11.002]
 ZHANG Li-jie,PENG Quan,LU Dong-hui,et al.Interaction Analysis of Key Genes in HCV-related Liver Cirrhosis[J].Journal of Medical Information,2023,36(18):10.[doi:10.3969/j.issn.1006-1959.2023.11.002]
[11]王 涛,侯润博,潘 鑫.基于生物信息学分析胰岛素分泌细胞诱导过程中miRNA-mRNA调控网络[J].医学信息,2023,36(06):8.[doi:10.3969/j.issn.1006-1959.2023.06.002]
 WANG Tao,HOU Run-bo,PAN Xin.Bioinformatics-based Analysis of miRNA-mRNA Regulatory Network During Induction of Insulin-secreting Cells[J].Journal of Medical Information,2023,36(18):8.[doi:10.3969/j.issn.1006-1959.2023.06.002]

更新日期/Last Update: 1900-01-01