[1]陈 豪,过华蕾,王文慧,等.AI技术建立宫颈鳞状上皮病变组织学切片模型及应用价值分析[J].医学信息,2023,36(05):37-40.[doi:10.3969/j.issn.1006-1959.2023.05.006]
 CHEN Hao,GUO Hua-lei,WANG Wen-hui,et al.Establishment of Histological Section Model of Cervical Squamous Epithelial Lesions by AI Technology and Analysis of its Application Value[J].Journal of Medical Information,2023,36(05):37-40.[doi:10.3969/j.issn.1006-1959.2023.05.006]
点击复制

AI技术建立宫颈鳞状上皮病变组织学切片模型及应用价值分析()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年05期
页码:
37-40
栏目:
临床信息学
出版日期:
2023-03-01

文章信息/Info

Title:
Establishment of Histological Section Model of Cervical Squamous Epithelial Lesions by AI Technology and Analysis of its Application Value
文章编号:
1006-1959(2023)05-0037-04
作者:
陈 豪过华蕾王文慧
(杭州市妇产科医院病理科,浙江 杭州 310000)
Author(s):
CHEN HaoGUO Hua-leiWANG Wen-huiet al.
(Department of Pathology,Hangzhou Women’s Hospital,Hangzhou 310000,Zhejiang,China)
关键词:
AI技术宫颈病变组织学切片模型
Keywords:
AI techniqueCervical lesionsHistological section model
分类号:
R737.33
DOI:
10.3969/j.issn.1006-1959.2023.05.006
文献标志码:
A
摘要:
目的 探讨人工智能(AI)技术在建立宫颈鳞状上皮病变组织学切片模型中的应用。方法 收集2016年1月-2020年12月在杭州市妇产科医院手术的113例宫颈鳞状上皮病变患者的组织学切片,采用麦克奥迪数字切片扫描与应用系统对切片进行数字扫描,扫描完成后导入浙江赛尔微因公司的人工智能图像分析系统CellVigen v11.0进行标注训练、验证及测试。再用AI对切片进行判读,将判读结果与病理结果进行比对分析。结果 通过训练集形成数据库及验证建立的AI模型与病理医生诊断符合率高,癌前病变、早期癌及浸润癌诊断符合率分别为86.70%、92.00%、92.00%。对AI诊断与病理医师的诊断结果比较分析,差异有统计学意义(P<0.05)。结论 AI能够实现对宫颈癌前病变、早期癌及浸润癌的有效判读诊断,与诊断医师具有较高的符合率,在辅助诊断中具备一定的应用价值。
Abstract:
Objective To explore the application of artificial intelligence ( AI ) technology in establishing a histological slice model of cervical squamous epithelial lesions.Methods The histological sections of 113 patients with cervical squamous epithelial lesions who underwent surgery in Hangzhou Women’s Hospital from January 2016 to December 2020 were collected. The sections were digitally scanned using the Motic Digital Slice Scanning and Application System. After the scanning was completed, it was imported into the artificial intelligence image analysis system CellVigen v11.0 of Zhejiang CellVigene Company for labeling training, verification and testing. AI was used to interpret the sections, and the interpretation results were compared with the pathological results.Results The AI model established by training set formation database and verification had a high diagnostic coincidence rate with pathologists, the diagnostic coincidence rates of precancerous lesions, early cancer and invasive cancer were 86.70%, 92.00% and 92.00%, respectively, and there was significant difference between the diagnosis of AI and that of pathologists (P<0.05).Conclusion AI can achieve effective interpretation and diagnosis of cervical precancerous lesions, early cancer and invasive cancer. It has a high coincidence rate with the diagnostician and has certain application value in the auxiliary diagnosis.

参考文献/References:

[1]Hou X,Shen G,Zhou L,et al.Artificial Intelligence in Cervical Cancer Screening and Diagnosis[J].Frontiers in Oncology,2022,12:851367.[2]Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2018,68(6):394-424.[3]Wentzensen N,Lahrmann B,Clarke MA,et al.Accuracy and Efficiency of Deep-Learning-Based Automation of Dual Stain Cytology in Cervical Cancer Screening[J].Journal of the National Cancer Institute,2021,113(1):72-79.[4]Li X,Xu Z,Shen X,et al.Detection of Cervical Cancer Cells in Whole Slide Images Using Deformable and Global Context Aware Faster RCNN-FPN[J].Current oncology (Toronto, Ont),2021,28(5):3585-3601.[5]Xue P,Ng MTA,Qiao Y.The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence[J].BMC Medicine,2020,18(1):169.[6]Bao H,Sun X,Zhang Y,et al.The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening:A population-based cohort study of 0.7 million women[J].Cancer Medicine,2020,9(18):6896-6906.[7]Yuan C,Yao Y,Cheng B,et al.The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images[J].Scientific Reports,2020,10(1):11639.[8]孙苗苗,张智弘.人工智能在病理诊断中的应用[J].中华病理学杂志,2019,48(4):338-340.[9]Akazawa M,Hashimoto K.Artificial intelligence in gynecologic cancers: Current status and future challenges-A systematic review[J].Artificial Intelligence in Medicine,2021,120:102164.[10]詹翔,张婷,林聪,等.基于深度学习的乳腺病理图像分类实验方法[J].计算机应用,2019,39(2):118-121.[11]高亮,屠秀顾,叶美治,等.基层医院病理科病理远程会诊[J].解放军医院管理杂志,2019,26(5):436-438.[12]王荃,沈勤,张泽林,等.基于深度学习和组织形态分析的肺癌基因突变预测[J].生物医学工程学杂志,2020,37(1):10-18.[13]赵可扬,杨沐月,朱静妤,等.机器学习辅助肿瘤诊断[J].肿瘤,2018,38(10):987-991.[14]蔡卫芳,刘燕,王竹音,等.AI技术在宫颈癌及癌前病变细胞学筛查中的应用分析[J].浙江临床医学,2021,23(6):879-880.[15]武爱媛,热米拉·热扎克,乔友林.人工智能在宫颈病变诊断及治疗中的应用进展与挑战[J].中国全科医学,2022,25(18):2215-2222,2230.[16]Stead WW.Clinical implications and challenges of artificial intelligence and deep learning[J].JAMA,2018,320(11):1107-1108.[17]Chen ZH,Lin L,Wu CF,et al.Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine[J].Cancer Communications (London, England),2021,41(11):1100-1115.[18]Bi WL,Hosny A,Schabath MB,et al.Artificial intelligence in cancer imaging: clinical challenges and applications[J].CA Cancer J Clin,2019,69(2):127-157.[19]Bao H,Bi H,Zhang X,et al.Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: A multicenter, clinical-based, observational study[J].Gynecologic Oncology,2020,159(1):171-178.[20]Sone K,Toyohara Y,Taguchi A,et al.Application of artificial intelligence in gynecologic malignancies: A review[J].The Journal of Obstetrics and Gynaecology Research,2021,47(8):2577-2585.

相似文献/References:

[1]NEELAM SAH,聂小凤,张 琴,等.宫颈脱落细胞miR-125b与宫颈病变关系及其在HR-HPV 阳性患者分层筛查中的作用研究[J].医学信息,2018,31(23):76.[doi:10.3969/j.issn.1006-1959.2018.23.021]
 NEELAM SAH,NIE Xiao-feng,ZHANG Qin,et al.The Relationship between Cervical Exfoliated Cell miR-125b and Cervical Lesions and its Role in Stratified Screening of HR-HPV Positive Patients[J].Journal of Medical Information,2018,31(05):76.[doi:10.3969/j.issn.1006-1959.2018.23.021]
[2]朱 军,张振君.妇女宫颈病变筛查分析[J].医学信息,2019,32(01):139.[doi:10.3969/j.issn.1006-1959.2019.01.043]
 ZHU Jun,ZHANG Zhen-jun.Screening Analysis of Cervical Lesions in Women[J].Journal of Medical Information,2019,32(05):139.[doi:10.3969/j.issn.1006-1959.2019.01.043]
[3]吴冬梅,王凤琴,姚文娟,等.高危型HPV分型检测联合TCT检查在宫颈病变筛查中的意义[J].医学信息,2020,33(04):173.[doi:10.3969/j.issn.1006-1959.2020.04.058]
 WU Dong-mei,WANG Feng-qin,YAO Wen-juan,et al.Significance of High-risk HPV Typing and TCT in Cervical Lesion Screening[J].Journal of Medical Information,2020,33(05):173.[doi:10.3969/j.issn.1006-1959.2020.04.058]
[4]杜照敏.宫颈液基细胞学联合阴道镜检查在宫颈病变诊断中的应用[J].医学信息,2020,33(15):172.[doi:10.3969/j.issn.1006-1959.2020.15.055]
 DU Zhao-min.Application of Cervical Fluid-based Cytology Combinedwith Colposcopy in Diagnosis of Cervical Lesions[J].Journal of Medical Information,2020,33(05):172.[doi:10.3969/j.issn.1006-1959.2020.15.055]
[5]苏讷敏,易驰喆,黄灵泉,等.宫颈细胞蜡块制作方法在宫颈病变筛查中的比较研究[J].医学信息,2021,34(07):170.[doi:10.3969/j.issn.1006-1959.2021.07.049]
 SU Ne-min,YI Chi-zhe,HUANG Ling-quan,et al.Comparative Study on the Methods of Making Cervical Cell Wax Blocks in the Screening of Cervical Lesions[J].Journal of Medical Information,2021,34(05):170.[doi:10.3969/j.issn.1006-1959.2021.07.049]
[6]姜洪苗.高危型HPV-E6/E7mRNA检测在宫颈病变筛查中的临床价值[J].医学信息,2021,34(22):163.[doi:10.3969/j.issn.1006-1959.2021.22.050]
 JIANG Hong-miao.Clinical Value of High-risk HPV-E6/E7 mRNA Detection in Cervical Lesions Screening[J].Journal of Medical Information,2021,34(05):163.[doi:10.3969/j.issn.1006-1959.2021.22.050]
[7]穆红茹.电子阴道镜下定位活检在宫颈病变诊断中的应用价值[J].医学信息,2022,35(01):178.[doi:10.3969/j.issn.1006-1959.2022.01.045]
 MU Hong-ru.Application Value of Localization Biopsy Under Electronic Colposcopy in Diagnosis of Cervical Lesions[J].Journal of Medical Information,2022,35(05):178.[doi:10.3969/j.issn.1006-1959.2022.01.045]
[8]毛 焕,潘建立,王长友.NLRP3炎症小体基因在HPV感染子宫颈细胞中的表达差异研究[J].医学信息,2023,36(06):114.[doi:10.3969/j.issn.1006-1959.2023.06.025]
 MAO Huan,PAN Jian-li,WANG Chang-you.Differential Expression of NLRP3 Inflammasome Gene in HPV-infected Cervical Cells[J].Journal of Medical Information,2023,36(05):114.[doi:10.3969/j.issn.1006-1959.2023.06.025]
[9]皮 颖,聂红星,幸 情.宫颈炎症感染不同微生物检验方法的效果及其对并发宫颈病变的诊断价值研究[J].医学信息,2023,36(24):140.[doi:10.3969/j.issn.1006-1959.2023.24.032]
 PI Ying,NIE Hong-xing,XING Qing.Effect of Different Microbiological Test Methods for Cervical Inflammation Infection and its Diagnostic Value for Concurrent Cervical Lesions[J].Journal of Medical Information,2023,36(05):140.[doi:10.3969/j.issn.1006-1959.2023.24.032]

更新日期/Last Update: 1900-01-01