[1]张洪禄,滕  悦,汤唯艳,等.基于生物信息学方法筛选PTCL-NOS关键基因及治疗药物[J].医学信息,2022,35(12):32-37.[doi:10.3969/j.issn.1006-1959.2022.12.008]
 ZHANG Hong-lu,TENG Yue,TANG Wei-yan,et al.Screening of PTCL-NOS Key Genes and Therapeutic Drugs Based on Bioinformatics Methods[J].Medical Information,2022,35(12):32-37.[doi:10.3969/j.issn.1006-1959.2022.12.008]
点击复制

基于生物信息学方法筛选PTCL-NOS关键基因及治疗药物()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年12期
页码:
32-37
栏目:
生物信息学
出版日期:
2022-06-15

文章信息/Info

Title:
Screening of PTCL-NOS Key Genes and Therapeutic Drugs Based on Bioinformatics Methods
文章编号:
1006-1959(2022)12-0032-06
作者:
张洪禄滕  悦汤唯艳
(1.江苏省肿瘤医院内科,江苏 南京 210000;2.中国药科大学基础医学与临床药学学院,江苏 南京 210000)
Author(s):
ZHANG Hong-luTENG YueTANG Wei-yanet al.
(1.Department of Internal Medicine,Jiangsu Cancer Hospital,Nanjing 210000,Jiangsu,China;2.College of Basic Medicine and Clinical Pharmacy,China Pharmaceutical University,Nanjing 210000,Jiangsu,China)
关键词:
非特指性外周T细胞淋巴瘤差异基因药物筛选PI3K-AKT信号通路芬戈莫德西尼莫得
Keywords:
Peripheral T-cell lymphoma not otherwise specifiedDifferential genesDrug screeningPI3K-AKT signaling pathwayFingomodSiponimo
分类号:
R733.4
DOI:
10.3969/j.issn.1006-1959.2022.12.008
文献标志码:
A
摘要:
目的 分析非特指性外周T细胞淋巴瘤(PTCL-NOS)表达出现差异的基因和信号通路并预测可能对PTCL-NOS产生治疗效果的药物,为今后的研究提供线索。方法 从基因数据库(GEO)中下载基因数据集GSE132550,使用R语言软件及其附加包进行分析获得PTCL-NOS中的差异基因,将差异基因上传到在线数据库进行基因富集分析,并构建蛋白质交互网络;使用Cytoscape软件进行关键基因筛选,并使用DGIdb数据库进行针对关键基因的药物预测。结果 共获得1139个存在差异表达的基因,包括670个上调基因和469个下调基因;KEGG信号通路中差异基因主要富集于PI3K-AKT信号通路,细胞外基质受体相互作用通路和阿米巴病相关信号通路;BP注释中差异基因主要存在于细胞外基质组织、细胞外结构组织和细胞连接组件;CC注释中差异基因主要涉及胶原蛋白-细胞外间质、基底膜和胶原三聚体的组成成分;MF注释中差异基因与细胞外基质结构成分、生长因子结合和胶原蛋白结合密切相关;差异基因主要包含在G蛋白偶联受体信号通路、胞外区和质膜中;药物-基因相交互用分析发现了105个药物(其中包括90种针对ADRA2A的药物)靶向9个特定基因(ADRA2A、S1PR1、S1PR3、S1PR4、CP、FN1、APOE、SERPINA1、C3)。结论 PI3K-AKT信号通路可能成为PTCL-NOS潜在的临床干预靶点,芬戈莫德、西尼莫得等药物可能对PTCL-NOS的治疗提供新的方向。
Abstract:
Objective To analyze the different expression genes and signal pathways of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), and to predict the drugs that may have therapeutic effect on PTCL-NOS, in order to provide clues for future research.Methods The gene data set GSE132550 was downloaded from the gene database (GEO), and the differential genes were obtained by using R language software and its additional package. The differential genes were uploaded to the online database for gene enrichment analysis, and the protein interaction network was constructed. Cytoscape software was used for key gene screening, and DGIdb database was used for drug prediction for key genes.Results A total of 1139 differentially expressed genes were obtained, including 670 up-regulated genes and 469 down-regulated genes. The differential genes in the KEGG signaling pathway were mainly enriched in the PI3K-AKT signaling pathway, the extracellular matrix receptor interaction pathway and the Amiba disease-related signaling pathway. The differential genes in BP annotation mainly existed in extracellular matrix tissues, extracellular structure tissues and cell junctional components; the differential genes in CC annotation mainly involve the components of collagen-extracellular matrix, basement membrane and collagen trimer; the differential genes in MF annotation were closely related to the structural components of extracellular matrix, growth factor binding and collagen binding. Differential genes were mainly included in G protein-coupled receptor signaling pathway, extracellular region and plasma membrane; drug-gene interaction analysis showed that 105 drugs (including 90 drugs for ADRA2A) targeted 9 specific genes (ADRA2A, S1PR1, S1PR3, S1PR4, CP, FN1, APOE, SERPINA1, C3).Conclusion PI3K-Akt signaling pathway may become a potential clinical intervention target of PTCL-NOS. Fingolimod, siponimod, and other drugs may provide a new direction for the treatment of PTCL-NOS.

参考文献/References:

[1]Broccoli A,Zinzani PL.Peripheral T-cell lymphoma, not otherwise specified[J].Blood,2017,129(9):1103-1112.[2]Zain JM.Aggressive T-cell lymphomas: 2019 updates on diagnosis, risk stratification, and management[J].Am J Hematol,2019,94(8):929-946.[3]Costa-Silva J,Domingues D,Lopes FM.RNA-Seq differential expression analysis: An extended review and a software tool[J].PLoS One,2017,12(12):e0190152.[4]Szklarczyk D,Gable AL,Lyon D,et al.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Res,2019,47(D1):D607-D613.[5]Doncheva NT,Morris JH,Gorodkin J,et al.Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data[J].J Proteome Res,2019,18(2):623-632.[6]Freshour SL,Kiwala S,Cotto KC,et al.Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts[J].Nucleic Acids Res,2021,49(D1):D1144-D1151.[7]Carson KR,Horwitz SM,Pinter-Brown LC,et al.A prospective cohort study of patients with peripheral T-cell lymphoma in the United States[J].Cancer,2017,123(7):1174-1183.[8]Oluwasanjo A,Kartan S,Johnson W,et al.Peripheral T-Cell Lymphoma, not Otherwise Specified (PTCL-NOS)[J].Cancer Treat Res,2019,176:83-98.[9]Gisselbrecht C,Sibon D.New perspectives in the therapeutic approach of peripheral T-cell lymphoma[J].Curr Opin Oncol,2018,30(5):285-291.[10]Alzahrani AS.PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside[J].Semin Cancer Biol,2019,59:125-132.[11]Xu F,Na L,Li Y,et al.Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours[J].Cell Biosci,2020,10:54.[12]Chen CY,Chen J,He L,et al.PTEN: Tumor Suppressor and Metabolic Regulator[J].Front Endocrinol (Lausanne),2018,9:338.[13]Liu R,Chen Y,Liu G,et al.PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J].Cell Death Dis,2020,11(9):797.[14]Wang W,Guo X,Dan H.alpha2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway[J].Onco Targets Ther,2020,13:10535-10546.[15]Ercetin E,Richtmann S,Delgado BM,et al.Clinical Significance of SERPINA1 Gene and Its Encoded Alpha1-antitrypsin Protein in NSCLC[J].Cancers (Basel),2019,11(9):1306.[16]Huebbe P,Rimbach G.Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors[J].Ageing Res Rev,2017,37:146-161.[17]Tavazoie MF,Pollack I,Tanqueco R,et al.LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer[J].Cell,2018,172(4):825-840.[18]Cai X,Liu C,Zhang TN,et al.Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion[J].J Cell Biochem,2018,119(6):4717-4728.[19]Glasner A,Levi A,Enk J,et al.NKp46 Receptor-Mediated Interferon-gamma Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis[J].Immunity,2018,48(1):107-119.[20]Huwiler A,Zangemeister-Wittke U.The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives[J].Pharmacol Ther,2018,185:34-49.[21]Lupino L,Perry T,Margielewska S,et al.Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma[J].Leukemia,2019,33(12):2884-2897.

相似文献/References:

[1]覃念群,刘 楷,米镜霖,等.基于生物信息学分析筛选与宫颈癌预后相关的关键基因[J].医学信息,2022,35(10):8.[doi:10.3969/j.issn.1006-1959.2022.10.002]
 QIN Nian-qun,LIU Kai,MI Jing-lin,et al.Screening Key Genes Related to the Prognosis of Cervical Cancer Based on Bioinformatics Analysis[J].Medical Information,2022,35(12):8.[doi:10.3969/j.issn.1006-1959.2022.10.002]
[2]桂慧慧,刘 霞.基于多数据库分析MYH10在肾透明细胞癌中的表达与意义[J].医学信息,2022,35(10):20.[doi:10.3969/j.issn.1006-1959.2022.10.004]
 GUI Hui-hui,LIU Xia.Expression and Significance of MYH10 in Renal Clear Cell Carcinoma Based on Multi-database Analysis[J].Medical Information,2022,35(12):20.[doi:10.3969/j.issn.1006-1959.2022.10.004]
[3]宋 崟,张 科.基于生物信息学方法探究溃疡性结肠炎的关键基因和通路[J].医学信息,2022,35(16):13.[doi:10.3969/j.issn.1006-1959.2022.16.003]
 SONG Yin,ZHANG Ke.Key Genes and Pathways of Ulcerative Colitis Based on Bioinformatics[J].Medical Information,2022,35(12):13.[doi:10.3969/j.issn.1006-1959.2022.16.003]
[4]郝晓明,王玉杰.基于数据挖掘对前列腺癌预后有预测价值的差异基因筛选[J].医学信息,2024,37(01):16.[doi:10.3969/j.issn.1006-1959.2024.01.003]
 HAO Xiao-ming,WANG Yu-jie.Screening of Differentially Expressed Genes with Predictive Value for Prognosis of Prostate Cancer Based on Data Mining[J].Medical Information,2024,37(12):16.[doi:10.3969/j.issn.1006-1959.2024.01.003]

更新日期/Last Update: 1900-01-01