[1]王宝娟,辛昊洋,李 月.基于网络药理学探讨木防己汤治疗类风湿关节炎的作用机制[J].医学信息,2022,35(23):25-31.[doi:10.3969/j.issn.1006-1959.2022.23.005]
 WANG Bao-juan,XIN Hao-yang,LI Yue.Study on Mechanism of Mufangji Decoction in the Treatment of Rheumatoid Arthritis Based on Network Pharmacology[J].Journal of Medical Information,2022,35(23):25-31.[doi:10.3969/j.issn.1006-1959.2022.23.005]
点击复制

基于网络药理学探讨木防己汤治疗类风湿关节炎的作用机制()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
35卷
期数:
2022年23期
页码:
25-31
栏目:
中医药信息学
出版日期:
2022-12-01

文章信息/Info

Title:
Study on Mechanism of Mufangji Decoction in the Treatment of Rheumatoid Arthritis Based on Network Pharmacology
文章编号:
1006-1959(2022)23-0025-07
作者:
王宝娟辛昊洋李 月
(1.天津中医药大学第二附属医院肾病风湿科,天津 3001502.天津市南开区广开街社区卫生服务中心,天津 300191)
Author(s):
WANG Bao-juanXIN Hao-yangLI Yue
(1.Department of Nephropathy and Rheumatism,the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine,Tianjin 300250,China;2.Guangkai Street Community Health Service Center,Nankai District,Tianjin 300191,China)
关键词:
木防己汤网络药理学类风湿关节炎
Keywords:
Mufangji DecoctionNetwork pharmacologyRheumatoid arthritis
分类号:
R593.22
DOI:
10.3969/j.issn.1006-1959.2022.23.005
文献标志码:
A
摘要:
目的 采用网络药理学技术探讨木防己汤治疗类风湿关节炎(RA)的作用机制。方法 通过在TCMSP平台对木防己汤进行活性成分筛选,在DrugBank、GeneCards、OMIM等数据库检索RA相关靶点。运用Venny2.1软件进行对比,筛选木防己汤与类风湿性关节炎的共同靶点,并绘制Venny图。利用Cytoscape3.7.2构建木防己汤单味药-有效成分-类风湿关节炎-交集靶点的生物网络。运用R语言软件(Rx64 4.0.4)对木防己汤与疾病共同靶基因中的蛋白进行GO功能富集分析和KEGG信号通路分析,获得显著富集的信号通路。结果 共得到木防己汤中30个有效成分及56个潜在靶点,获取RA疾病相关靶点5046个,木防己汤-RA疾病共同靶点37个,GO功能分析共包含83条富集结果,KEGG分析共筛选出在治疗RA方面具有作用的90条通路。木防己汤主要成分β-谷甾醇、山柰酚,可能是调节PPARG、CASP3、RELA、ESR1、ICAM1等靶点,调控脂质和动脉粥样硬化、肿瘤坏死因子信号通路、弓形虫病、化学致癌-受体激活、流体剪切应力与动脉粥样硬化、前列腺癌、糖尿病并发症中的AGE-RAGE信号通路、乙型肝炎、甲型流感、细胞凋亡等信号通路。结论 木防己汤对RA的治疗呈现多成分、多靶点、多通路的特点,研究结果初步推测木防己汤有效活性成分治疗类风湿关节炎的作用机制,为木防己汤治疗类风湿关节炎提供一定的理论依据。
Abstract:
Objective To explore the mechanism of Mufangji Decoction in treating rheumatoid arthritis ( RA ) by network pharmacology.Methods The disease-related targets were searched in DrugBank, GeneCards, OMIM and other databases by screening the active components of Mufangji Decoction on the TCMSP platform. Venny2.1 software was used for comparison to screen out the common targets of Mufangji Decoction and rheumatoid arthritis, and Venny diagram was drawn. Cytoscape 3.7.2 was used to construct a biological network of single herb-effective components-rheumatoid arthritis-intersecting targets of Mufangji Decoction. The R language software (Rx64 4.0.4) was used to perform GO functional enrichment analysis and KEGG signaling pathway analysis on the proteins in the common target genes of Mufangji Decoction and disease, and a significantly enriched signaling pathway was obtained.Results A total of 30 active ingredients and 56 potential targets in Mufangji Decoction were obtained, 5046 RA disease-related targets were obtained, and 37 common targets of Mufangji Decoction-RA disease were obtained. GO functional analysis contained a total of 83 enrichment results. KEGG analysis screened 90 pathways that had a role in the treatment of RA. The main components of Mufangji Decoction β-sitosterol, kaempferol, may be the regulation of PPARG, CASP3, RELA, ESR1, ICAM1 and other targets, regulation of lipid and atherosclerosis, tumor necrosis factor signaling pathways, toxoplasmosis, chemical carcinogenesis-receptor activation, fluid shear stress and atherosclerosis, prostate cancer, diabetes complications in the AGE-RAGE signaling pathway, hepatitis B, influenza, apoptosis and other signaling pathways.Conclusion The treatment of RA by Mufangji Decoction presents the characteristics of multi-component, multi-target and multi-pathway. The results preliminarily speculate the mechanism of the effective active ingredients of Mufangji Decoction in the treatment of rheumatoid arthritis, and provide a theoretical basis for the treatment of rheumatoid arthritis by Mufangji Decoction.

参考文献/References:

[1]李亚南,许二平.木防己汤析疑[J].中国中医基础医学杂志,2020,26(7):981-982,1029.[2]Hopkins AL.Network pharmacology[J].Nat Biotechnol,2007,25(10):1110-1111.[3]杨文娜,徐文华,徐香梅,等.基于网络药理学的丹参-赤芍药对治疗急性心肌梗死的作用机制分析[J].辽宁中医杂志,2020,47(1):141-146.[4]巩勋,崔家康,姜泉,等.1388例类风湿关节炎患者中医证型与疾病活动度特征横断面调查[J].中医杂志,2020,62(4):312-317.[5]丁文聪,陈陶甫,缪辉宇.木防己汤联合甲氨蝶呤对类风湿关节炎急性发作期患者氧自由代谢、骨代谢及血瘀状态的影响[J].中国医药导报,2020,17(18):131-134,142.[6]殷建保.加味木防己汤联合甲氨蝶呤片治疗类风湿关节炎急性发作效果观察[J].实用中医药杂志,2019,35(4):459-460.[7]谢政权,季兵,刘峰,等.加味木防己汤合甲氨蝶呤治疗类风湿关节炎急性发作期疗效观察[J].现代中西医结合杂志,2018,27(19):2148-2151.[8]Liu R,Hao D,Xu W,et al.β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice[J].Pharm Biol,2019,57(1):161-168.[9]Guo Q,Li L,Zheng K,et al.Imperatorin and β-sitosterol have synergistic activities in alleviating collagen-induced arthritis[J].J Leukoc Biol,2020,108(2):509-517.[10]Zhang F,Liu Z,He X,et al.β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway[J].Drug Deliv,2020,27(1):1329-1341.[11]郑钰铮,邱志伟,黄艳峰,等.山柰酚治疗类风湿关节炎的作用机制探讨[J].风湿病与关节炎,2021,10(3):58-61.[12]Lee CJ,Moon SJ,Jeong JH,et al.Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis[J].Cell Death Dis,2018,9(3):401.[13]García-Ricobaraza M,García-Bermúdez M,Torres-Espinola FJ,et al.Association study of rs1801282 PPARG gene polymorphism and immune cells and cytokine levels in a Spanish pregnant women cohort and their offspring[J].J Biomed Sci,2020,27(1):101.[14]Baroi S,Czernik PJ,Chougule A,et al.PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss[J].Bone,2021,147:115913.[15]Hu YH,Han J,Wang L,et al.α-Mangostin Alleviated Inflammation in Rats With Adjuvant-Induced Arthritis by Disrupting Adipocytes-Mediated Metabolism-Immune Feedback[J].Front Pharmacol,2021,12:692806.[16]Yang Q,Zhao W,Chen Y,et al.RelA/MicroRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages[J].Cell Death Dis,2021,12(11):1060.[17]Li Z,Fu J,Cao Y,et al.Drug discovery in rheumatoid arthritis with joint effusion identified by text mining and biomedical databases[J].Ann Palliat Med,2021,10(5):5218-5230.[18]Bui TM,Wiesolek HL,Sumagin R.ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis[J].J Leukoc Biol,2020,108(3):787-799.[19]Schaefer A,van Duijn TJ,Majolee J,et al.Endothelial CD2AP Binds the Receptor ICAM-1 To Control Mechanosignaling, Leukocyte Adhesion, and the Route of Leukocyte Diapedesis In Vitro[J].J Immunol,2017,198(12):4823-4836.[20]Ryu H,Kim J,Kim D,et al.Cellular and Molecular Links between Autoimmunity and Lipid Metabolism[J].Mol Cells,2019,42(11):747-754.[21]陈涛,徐浩,施杞.海风藤治疗类风湿关节炎的网络药理学研究[J].中药新药与临床药理,2020,31(2):192-198.[22]陈冬志,孟明,顾立刚.加味木防己汤抗大鼠实验性关节炎的研究[J].中国中西医结合杂志,2005,25(8):727-729.[23]Kaczanowski S.Symbiotic Origin of Apoptosis[J].Results Probl Cell Differ,2020,69:253-280.[24]Zhang Q,Liu J,Zhang M,et al.Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis[J].Biomolecules,2019,9(12):795.[25]孟明,顾立刚,张前,等.复方木防己汤对AA大鼠滑膜细胞类肿瘤样增生及相关基因表达影响的研究[J].中华中医药杂志,2005,20(6):370-372,365.[26]Lorenowicz MJ,Fernandez-Borja M,Hordijk PL.cAMP signaling in leukocyte transendothelial migration[J].Arterioscler Thromb Vasc Biol,2007,27(5):1014-1022.[27]Smatti MK,Cyprian FS,Nasrallah GK,et al.Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms[J].Viruses,2019,11(8):762.[28]王超,赵岩,贺鑫,等.HBV感染对类风湿性关节炎和系统性红斑狼疮疾病活动度、免疫功能及炎症反应的影响[J].中华医院感染学杂志,2021,31(17):2599-2603[29]Wang Y,Chen S,Chen J,et al.Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sj?觟gren’s syndrome highlight T cell-initiated autoimmunity[J].Ann Rheum Dis,2020,79(2):268-275.[30]Hosseininejad Z,Sharif M,Sarvi S,et al.Toxoplasmosis seroprevalence in rheumatoid arthritis patients: A systematic review and meta-analysis[J].PLoS Negl Trop Dis,2018,12(6):e0006545.[31]Hellgren K,Baecklund E,Backlin C,et al.Rheumatoid Arthritis and Risk of Malignant Lymphoma: Is the Risk Still Increased?[J].Arthritis Rheumatol,2017,69(4):700-708.[32]Bhandari B,Basyal B,Sarao MS,et al.Prevalence of Cancer in Rheumatoid Arthritis: Epidemiological Study Based on the National Health and Nutrition Examination Survey (NHANES)[J].Cureus,2020,12(4):e7870.

相似文献/References:

[1]邱 杨,张 菁.基于网络药理学的黄连治疗糖尿病的作用机制研究[J].医学信息,2020,33(01):64.[doi:10.3969/j.issn.1006-1959.2020.01.021]
 QIU Yang,ZHANG Jing.Study on the Mechanism of Coptis Chinensis in Treating Diabetes Based on Network Pharmacology[J].Journal of Medical Information,2020,33(23):64.[doi:10.3969/j.issn.1006-1959.2020.01.021]
[2]张 科,谷冬梅,李 波,等.当归-川芎药对治疗原发性痛经的网络药理学研究[J].医学信息,2021,34(14):92.[doi:10.3969/j.issn.1006-1959.2021.14.025]
 ZHANG Ke,GU Dong-mei,LI Bo,et al.A Network Pharmacological Study of Angelica-ligusticum Chuanxiong Medicine in the Treatment of Primary Dysmenorrhea[J].Journal of Medical Information,2021,34(23):92.[doi:10.3969/j.issn.1006-1959.2021.14.025]
[3]郭园园,张浩然,卓士铉,等.基于网络药理学及体外实验探讨桔梗皂苷D对肝癌细胞迁移侵袭的影响及相关机制[J].医学信息,2021,34(23):1.[doi:10.3969/j.issn.1006-1959.2021.23.001]
 GUO Yuan-yuan,ZHANG Hao-ran,ZHUO Shi-xuan,et al.Effects of Platycodin D on Migration and Invasion of Hepatocellular Carcinoma Cells Based on Network Pharmacology and In Vitro Experiments[J].Journal of Medical Information,2021,34(23):1.[doi:10.3969/j.issn.1006-1959.2021.23.001]
[4]梁若飞,张亚兰,向 月,等.基于网络药理学探讨毛兰素抗肿瘤作用机制研究[J].医学信息,2021,34(24):39.[doi:10.3969/j.issn.1006-1959.2021.24.008]
 LIANG Ruo-fei,ZHANG Ya-lan,XIANG Yue,et al.Study on Antitumor Mechanism of Erianin Based on Network Pharmacology[J].Journal of Medical Information,2021,34(23):39.[doi:10.3969/j.issn.1006-1959.2021.24.008]
[5]王亚婷,刘 昱,李明权.基于网络药理学探讨金钱草治疗肾结石的作用机制[J].医学信息,2022,35(02):69.[doi:10.3969/j.issn.1006-1959.2022.02.017]
 WANG Ya-ting,LIU Yu,LI Ming-quan.Mechanism of Herba Lysimachiae on Renal Calculi Based on Network Pharmacology[J].Journal of Medical Information,2022,35(23):69.[doi:10.3969/j.issn.1006-1959.2022.02.017]
[6]倪 杰,徐 晶,蒋 涛.基于网络药理学方法探讨桃红四物汤防治股骨头坏死的潜在分子机制[J].医学信息,2022,35(03):1.[doi:10.3969/j.issn.1006-1959.2022.03.001]
 NI Jie,XU Jing,JIANG Tao.The Mechanism of Taohong Siwu Decoction in the Treatment of Osteonecrosisof the Femoral Head Based on Network Pharmacology[J].Journal of Medical Information,2022,35(23):1.[doi:10.3969/j.issn.1006-1959.2022.03.001]
[7]刘少玲,谢梅娟,谭雪群,等.基于网络药理学方法研究柴胡疏肝散抗消化性溃疡的作用机制[J].医学信息,2022,35(09):22.[doi:10.3969/j.issn.1006-1959.2022.09.006]
 LIU Shao-ling,XIE Mei-juan,TAN Xue-qun,et al.Study on the Mechanism of Chaihu Shugan Powder for Anti-peptic Ulcer Based on Network Pharmacology[J].Journal of Medical Information,2022,35(23):22.[doi:10.3969/j.issn.1006-1959.2022.09.006]
[8]张 蕊.六味地黄丸治疗围绝经期综合征的网络药理学研究[J].医学信息,2022,35(09):28.[doi:10.3969/j.issn.1006-1959.2022.09.007]
 ZHANG Rui.Internet Pharmacology Study of Liuwei Dihuang Pills in the Treatment of Perimenopausal Syndrome[J].Journal of Medical Information,2022,35(23):28.[doi:10.3969/j.issn.1006-1959.2022.09.007]
[9]王 娜,梁建庆,冯 鑫,等.基于网络药理学和分子对接探讨肾衰宁治疗糖尿病肾病的有效成分及作用机制[J].医学信息,2022,35(22):61.[doi:10.3969/j.issn.1006-1959.2022.22.010]
 WANG Na,LIANG Jian-qing,FENG Xin,et al.Study on Effective Components and Mechanism of Shenshuaining in Treating Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2022,35(23):61.[doi:10.3969/j.issn.1006-1959.2022.22.010]
[10]俞 宁,陈 健,曹烨民,等.基于网络药理学和分子对接探讨白鹤方治疗血栓性浅静脉炎的作用机制[J].医学信息,2022,35(23):11.[doi:10.3969/j.issn.1006-1959.2022.23.003]
 YU Ning,CHEN Jian,CAO Ye-min,et al.Study on Mechanism of Baihe Formula in Treating Superficial Thrombophlebitis Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2022,35(23):11.[doi:10.3969/j.issn.1006-1959.2022.23.003]

更新日期/Last Update: 1900-01-01