[1]张 燕,于官正,张 钰,等.基于网络药理学和分子对接探讨二氢杨梅素对线粒体自噬的作用机制[J].医学信息,2023,36(20):10-15.[doi:10.3969/j.issn.1006-1959.2023.20.002]
 ZHANG Yan,YU Guan-zheng,ZHANG Yu,et al.Mechanism of Dihydromyricetin on Mitophagy by Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2023,36(20):10-15.[doi:10.3969/j.issn.1006-1959.2023.20.002]
点击复制

基于网络药理学和分子对接探讨二氢杨梅素对线粒体自噬的作用机制()
分享到:

医学信息[ISSN:1006-1959/CN:61-1278/R]

卷:
36卷
期数:
2023年20期
页码:
10-15
栏目:
生物信息学
出版日期:
2023-10-15

文章信息/Info

Title:
Mechanism of Dihydromyricetin on Mitophagy by Network Pharmacology and Molecular Docking
文章编号:
1006-1959(2023)20-0010-06
作者:
张 燕于官正张 钰
(1.长江大学附属荆州医院肿瘤科,湖北 荆州 434023;2.湖北民族大学医学部,湖北 恩施 445000;3.湖北民族大学武陵山中药材检验检测中心,湖北 恩施 445000)
Author(s):
ZHANG YanYU Guan-zhengZHANG Yuet al.
(1.Department of Oncology,Jingzhou Hospital Affiliated to Yangtze University,Jingzhou 434023,Hubei,China;2.School of Medicine,Hubei Minzu University,Enshi 445000,Hubei,China;3.Chinese Medicinal Materials Products Quality Supervision and Inspection Center in Wuling Mountainous Area,Hubei Minzu University,Enshi 445000,Hubei,China)
关键词:
网络药理学分子对接二氢杨梅素线粒体自噬
Keywords:
Network pharmacologyMolecular dockingDihydromyricetinMitophagy
分类号:
R996
DOI:
10.3969/j.issn.1006-1959.2023.20.002
文献标志码:
A
摘要:
目的 利用网络药理学和分子对接方法探讨二氢杨梅素对线粒体自噬的作用机制。方法 使用Swiss Target Prediction数据库预测二氢杨梅素的相关靶点;通过GeneCards数据库和NCBI数据库收集线粒体自噬的相关靶点;利用String数据库构建PPI网络,通过R 4.1.3软件进行GO功能和KEGG通路富集分析,使用Cytoscape 3.7.2 软件构建“化合物-靶点-信号通路”网络图;运用PyMOL 2.4.0 软件和Auto Dock Tools 1.5.6、Autodock Vina软件进行分子对接。结果 最终得到二氢杨梅素的作用靶点70个,二氢杨梅素与线粒体自噬共有靶点15个;二氢杨梅素与线粒体自噬主要涉及916个生物过程包括对氧化应激、金属离子的反应等,主要富集的信号通路包括癌症蛋白聚糖、癌症、MAPK等40条;“化合物-靶点-通路”网络图显示,二氢杨梅素与线粒体自噬与多个靶点、多个通路具有相互作用;分子对接中二氢杨梅素均能同15个靶点进行有效的结合,其中与FGFR1结合效果最佳,与PPARG的结合效果次之。结论 二氢杨梅素可通过HIF1A、KDR、APP等多个靶点调控癌症蛋白聚糖、癌症、MAPK等多个信号通路参与线粒体自噬。
Abstract:
Objective To explore the mechanism of dihydromyricetin on mitophagy using network pharmacology and molecular docking methods.Methods The related targets of dihydromyricetin were predicted using the Swiss Target Prediction database; the related targets of mitophagy were collected from the GeneCards database and the NCBI database; the PPI network was constructed using the String database, and the GO function and KEGG pathway were performed by R 4.1.3 software. Cytoscape 3.7.2 software was used to construct "compound-target-pathway" network diagram; PyMOL 2.4.0 software,Auto Dock Tools 1.5.6 software and Autodock Vina software were used for molecular docking.Results Finally, 70 targets of dihydromyricetin were obtained, and 15 common targets of dihydromyricetin and mitophagy were obtained. Dihydromyricetin and mitophagy were mainly involved in 916 biological processes, including responses to oxidative stress and metal ions, and the main enriched signaling pathways include 40 pathways such as cancer proteoglycan, cancer, and MAPK;"compound-target-pathway" network diagram showed that dihydromyricetin and mitophagy interacted with multiple targets and multiple pathways. In molecular docking, dihydromyricetin could effectively bind to 15 targets, among which the binding effect with FGFR1 was the best, followed by the binding effect with PPARG.Conclusion Dihydromyricetin can participate in mitophagy by regulating cancer proteoglycan, cancer, MAPK and other signaling pathways through multiple targets such as HIF1A, KDR, and APP.

参考文献/References:

[1]Li A,Gao M,Liu B,et al.Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J].Cell Death Dis,2022,13(5):444.[2]Chung C,Seo W,Silwal P,et al.Crosstalks between inflammasome and autophagy in cancer[J].J Hematol Oncol,2020,13(1):100.[3]Sun Y,Liu S,Yang S,et al.Mechanism of Dihydromyricetin on Inflammatory Diseases[J].Front Pharmacol,2022,12:794563.[4]Ni T,Lin N,Lu W,et al.Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy[J].Cardiovasc Drugs Ther,2020,34(3): 291-301.[5]Zhou X,Yu L,Zhou M,et al.Dihydromyricetin ameliorates liver fibrosis via inhibition of hepatic stellate cells by inducing autophagy and natural killer cell-mediated killing effect[J].Nutr Metab (Lond),2021,18(1):64.[6]Rohwer N,Cramer T.Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways[J].Drug Resist Updat,2011,14(3):191-201.[7]Liu S,Ai Q,Feng K,et al.The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways[J].Apoptosis,2016,21(12):1366-1385.[8]付婷婷,栾红,徐衍红,等.二氢杨梅素对人晶状体上皮细胞增殖、凋亡的影响及分子机制研究[J].世界临床药物,2022,43(7):844-850.[9]温培楠,林明恕,金冕,等.二氢杨梅素通过ERK/VEGFA/VEGFR2通路对体内外胃癌血管生成的影响[J].中国癌症杂志,2020,30(2):113-121.[10]Buraschi S,Neill T,Iozzo RV.Decorin is a devouring proteoglycan: Remodeling of intracellular catabolism via autophagy and mitophagy[J].Matrix Biol,2019,75-76:260-270.[11]Goudarzi S,Hosseini A,Abdollahi M,et al.Insights Into Parkin-Mediated Mitophagy in Alzheimer’s Disease: A Systematic Review[J].Front Aging Neurosci,2021,13:674071.[12]丁亚,赵月阳,贺桂琼.二氢杨梅素对APP/PS1转基因小鼠学习记忆和脑内自噬的影响[J].神经解剖学杂志,2020,36(4):411-418.[13]易永丽,雷娅,王坤,等.大黄-桃仁药对调控子宫腺肌病在位内膜线粒体稳态的机制研究[J].中草药,2022,53(15):4709-4718.[14]Hou X,Tong Q,Wang W,et al.Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways[J].Life Sci,2015,130:38-46.[15]张占伟,廖亮英,杨惠,等.龙琥醒脑颗粒介导线粒体自噬对脑缺血再灌注损伤模型大鼠脑神经细胞的保护作用[J].中医药导报,2022,28(11):23-29.[16]Chen B,Chen Z,Liu M,et al.Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects[J].Brain Res Bull,2019,153:122-132.[17]Zhang Z,Yu J.NR4A1 Promotes Cerebral Ischemia Reperfusion Injury by Repressing Mfn2-Mediated Mitophagy and Inactivating the MAPK-ERK-CREB Signaling Pathway[J].Neurochem Res,2018,43(10):1963-1977.[18]匡红.Jnk2通过smARF的降解来调控压力诱导的线粒体自噬及组织损伤[D].杭州:浙江理工大学,2015.[19]乔曦,许世豪,王宇炜,等.大柴胡汤通过调控p38 MAPK/IL-6/STAT3信号通路抑制肝癌的作用机制[J].中国实验方剂学杂志,2022,28(16):19-31.[20]白博文.雌激素通过GPER-p38MAPK/STAT3信号通路影响线粒体自噬调节胰岛β细胞功能的分子机制研究[D].沈阳:中国医科大学,2021.

相似文献/References:

[1]邱 杨,张 菁.基于网络药理学的黄连治疗糖尿病的作用机制研究[J].医学信息,2020,33(01):64.[doi:10.3969/j.issn.1006-1959.2020.01.021]
 QIU Yang,ZHANG Jing.Study on the Mechanism of Coptis Chinensis in Treating Diabetes Based on Network Pharmacology[J].Journal of Medical Information,2020,33(20):64.[doi:10.3969/j.issn.1006-1959.2020.01.021]
[2]张 科,谷冬梅,李 波,等.当归-川芎药对治疗原发性痛经的网络药理学研究[J].医学信息,2021,34(14):92.[doi:10.3969/j.issn.1006-1959.2021.14.025]
 ZHANG Ke,GU Dong-mei,LI Bo,et al.A Network Pharmacological Study of Angelica-ligusticum Chuanxiong Medicine in the Treatment of Primary Dysmenorrhea[J].Journal of Medical Information,2021,34(20):92.[doi:10.3969/j.issn.1006-1959.2021.14.025]
[3]郭园园,张浩然,卓士铉,等.基于网络药理学及体外实验探讨桔梗皂苷D对肝癌细胞迁移侵袭的影响及相关机制[J].医学信息,2021,34(23):1.[doi:10.3969/j.issn.1006-1959.2021.23.001]
 GUO Yuan-yuan,ZHANG Hao-ran,ZHUO Shi-xuan,et al.Effects of Platycodin D on Migration and Invasion of Hepatocellular Carcinoma Cells Based on Network Pharmacology and In Vitro Experiments[J].Journal of Medical Information,2021,34(20):1.[doi:10.3969/j.issn.1006-1959.2021.23.001]
[4]梁若飞,张亚兰,向 月,等.基于网络药理学探讨毛兰素抗肿瘤作用机制研究[J].医学信息,2021,34(24):39.[doi:10.3969/j.issn.1006-1959.2021.24.008]
 LIANG Ruo-fei,ZHANG Ya-lan,XIANG Yue,et al.Study on Antitumor Mechanism of Erianin Based on Network Pharmacology[J].Journal of Medical Information,2021,34(20):39.[doi:10.3969/j.issn.1006-1959.2021.24.008]
[5]王亚婷,刘 昱,李明权.基于网络药理学探讨金钱草治疗肾结石的作用机制[J].医学信息,2022,35(02):69.[doi:10.3969/j.issn.1006-1959.2022.02.017]
 WANG Ya-ting,LIU Yu,LI Ming-quan.Mechanism of Herba Lysimachiae on Renal Calculi Based on Network Pharmacology[J].Journal of Medical Information,2022,35(20):69.[doi:10.3969/j.issn.1006-1959.2022.02.017]
[6]倪 杰,徐 晶,蒋 涛.基于网络药理学方法探讨桃红四物汤防治股骨头坏死的潜在分子机制[J].医学信息,2022,35(03):1.[doi:10.3969/j.issn.1006-1959.2022.03.001]
 NI Jie,XU Jing,JIANG Tao.The Mechanism of Taohong Siwu Decoction in the Treatment of Osteonecrosisof the Femoral Head Based on Network Pharmacology[J].Journal of Medical Information,2022,35(20):1.[doi:10.3969/j.issn.1006-1959.2022.03.001]
[7]刘少玲,谢梅娟,谭雪群,等.基于网络药理学方法研究柴胡疏肝散抗消化性溃疡的作用机制[J].医学信息,2022,35(09):22.[doi:10.3969/j.issn.1006-1959.2022.09.006]
 LIU Shao-ling,XIE Mei-juan,TAN Xue-qun,et al.Study on the Mechanism of Chaihu Shugan Powder for Anti-peptic Ulcer Based on Network Pharmacology[J].Journal of Medical Information,2022,35(20):22.[doi:10.3969/j.issn.1006-1959.2022.09.006]
[8]张 蕊.六味地黄丸治疗围绝经期综合征的网络药理学研究[J].医学信息,2022,35(09):28.[doi:10.3969/j.issn.1006-1959.2022.09.007]
 ZHANG Rui.Internet Pharmacology Study of Liuwei Dihuang Pills in the Treatment of Perimenopausal Syndrome[J].Journal of Medical Information,2022,35(20):28.[doi:10.3969/j.issn.1006-1959.2022.09.007]
[9]李风雷,韩紫阳,朱 杰.基于文献数据挖掘和网络药理学的中药治疗胰岛素抵抗的作用机制研究[J].医学信息,2022,35(20):5.[doi:10.3969/j.issn.1006-1959.2022.20.002]
 LI Feng-lei,HAN Zi-yang,ZHU Jie.Study on Mechanism of Chinese Medicine in Treating Insulin Resistance Based on Literature Data Mining and Network Pharmacology[J].Journal of Medical Information,2022,35(20):5.[doi:10.3969/j.issn.1006-1959.2022.20.002]
[10]陈 威,梁 新,苏 捷,等.UPLC-Q-TOF-MS联合网络药理学分析滇黄芩抗菌的潜在药效物质及作用机制[J].医学信息,2022,35(23):18.[doi:10.3969/j.issn.1006-1959.2022.23.004]
 CHEN Wei,LIANG Xin,SU Jie,et al.Study on the Potential Effective Substances and Mechanism of Scutellaria Amoenain Antibacterial Based on UPLC-Q-TOF-MS and Network Pharmacology[J].Journal of Medical Information,2022,35(20):18.[doi:10.3969/j.issn.1006-1959.2022.23.004]
[11]王 娜,梁建庆,冯 鑫,等.基于网络药理学和分子对接探讨肾衰宁治疗糖尿病肾病的有效成分及作用机制[J].医学信息,2022,35(22):61.[doi:10.3969/j.issn.1006-1959.2022.22.010]
 WANG Na,LIANG Jian-qing,FENG Xin,et al.Study on Effective Components and Mechanism of Shenshuaining in Treating Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2022,35(20):61.[doi:10.3969/j.issn.1006-1959.2022.22.010]
[12]俞 宁,陈 健,曹烨民,等.基于网络药理学和分子对接探讨白鹤方治疗血栓性浅静脉炎的作用机制[J].医学信息,2022,35(23):11.[doi:10.3969/j.issn.1006-1959.2022.23.003]
 YU Ning,CHEN Jian,CAO Ye-min,et al.Study on Mechanism of Baihe Formula in Treating Superficial Thrombophlebitis Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2022,35(20):11.[doi:10.3969/j.issn.1006-1959.2022.23.003]
[13]张科楠,袁倩文.基于网络药理学探讨栀子治疗溃疡性结肠炎的作用机制[J].医学信息,2023,36(05):22.[doi:10.3969/j.issn.1006-1959.2023.05.004]
 ZHANG Ke-nan,YUAN Qian-wen.Pharmacological Mechanism of Cape Jasmine Fruit in the Treatment of Ulcerative Colitis Based on Network Pharmacology[J].Journal of Medical Information,2023,36(20):22.[doi:10.3969/j.issn.1006-1959.2023.05.004]
[14]周奕良,毛国庆.基于网络药理学和分子对接技术探讨淫羊藿苷治疗骨质疏松症的作用机制[J].医学信息,2023,36(05):29.[doi:10.3969/j.issn.1006-1959.2023.05.005]
 ZHOU Yi-liang,MAO Guo-qing.The Mechanism of Icariin in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking Technology[J].Journal of Medical Information,2023,36(20):29.[doi:10.3969/j.issn.1006-1959.2023.05.005]
[15]李风雷,韩紫阳,邱玲艳,等.萆菟汤治疗慢性前列腺炎的网络药理学研究[J].医学信息,2023,36(08):1.[doi:10.3969/j.issn.1006-1959.2023.08.001]
 LI Feng-lei,HAN Zi-yang,QIU Ling-yan,et al.Study on Network Pharmacology of Bitu Decoction in the Treatment of Chronic Prostatitis[J].Journal of Medical Information,2023,36(20):1.[doi:10.3969/j.issn.1006-1959.2023.08.001]
[16]王 珺,徐传花.基于网络药理学与分子对接的“鬼箭羽-白花蛇舌草”治疗子宫内膜异位症的作用机制研究[J].医学信息,2023,36(09):21.[doi:10.3969/j.issn.1006-1959.2023.09.004]
 WANG Jun,XU Chuan-hua.A Study on the Mechanism of "Winged Euonymus Branchlet and Spreading Hedyotis Herb" in the Treatment of Endometriosis Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2023,36(20):21.[doi:10.3969/j.issn.1006-1959.2023.09.004]
[17]陈 喜,许 红,李若男,等.基于网络药理学和分子对接的肉豆蔻抗结直肠癌机制研究[J].医学信息,2023,36(14):16.[doi:10.3969/j.issn.1006-1959.2023.14.003]
 CHEN Xi,XU Hong,LI Ruo-nan,et al.Mechanism of Myristica Fragrans Houtt. Against Colorectal Carcinoma Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2023,36(20):16.[doi:10.3969/j.issn.1006-1959.2023.14.003]
[18]王闯红,常旭贞.基于网络药理学和分子对接探讨姜黄素治疗溃疡性结肠炎的分子机制[J].医学信息,2023,36(19):13.[doi:10.3969/j.issn.1006-1959.2023.19.004]
 WANG Chuang-hong,CHANG Xu-zhen.Molecular Mechanism of Curcumin in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking[J].Journal of Medical Information,2023,36(20):13.[doi:10.3969/j.issn.1006-1959.2023.19.004]
[19]谢淑君,袁海静,范婷婷,等.基于GEO数据库及网络药理学探讨六郁汤辅助治疗重度抑郁症的作用机制[J].医学信息,2023,36(20):16.[doi:10.3969/j.issn.1006-1959.2023.20.003]
 XIE Shu-jun,YUAN Hai-jing,FAN Ting-ting,et al.Analysis of the Mechanism of Liuyu Decoction in the Adjuvant Treatment of Major Depressive Disorder Based on GEO Database and Network Pharmacology[J].Journal of Medical Information,2023,36(20):16.[doi:10.3969/j.issn.1006-1959.2023.20.003]
[20]李 硕,赵佩佩,袁 斌.基于数据挖掘和网络药理学探讨中药治疗儿童腺样体肥大的用药规律和作用机制[J].医学信息,2024,37(02):55.[doi:10.3969/j.issn.1006-1959.2024.02.009]
 LI Shuo,ZHAO Pei-pei,YUAN Bin.Medication Rule and Mechanism of Traditional Chinese Medicine in the Treatment of Adenoidal Hypertrophy in Children Based on Data Mining and Network Pharmacology[J].Journal of Medical Information,2024,37(20):55.[doi:10.3969/j.issn.1006-1959.2024.02.009]

更新日期/Last Update: 1900-01-01